
CNVkit Documentation
Release 0.9.0

Eric Talevich

Aug 17, 2017

Contents

1 Quick start 3
1.1 Install CNVkit . 3
1.2 Download the reference genome . 3
1.3 Map sequencing reads to the reference genome . 4
1.4 Build a reference from normal samples and infer tumor copy ratios 4
1.5 Next steps . 5

2 Command line usage 7
2.1 Copy number calling pipeline . 8
2.2 Plots and graphics . 18
2.3 Text and tabular reports . 25
2.4 Compatibility and other I/O . 28
2.5 Additional scripts . 32

3 FAQ & How To 33
3.1 Calling copy number gains and losses . 33
3.2 Allele frequencies and copy number . 34
3.3 Tumor analysis . 34
3.4 Tumor heterogeneity . 35
3.5 Germline analysis . 37
3.6 Whole-genome sequencing and targeted amplicon capture . 37
3.7 Chromosomal sex . 39
3.8 Bias corrections . 40
3.9 File formats . 41

4 Python API 45
4.1 cnvlib package . 45
4.2 scikit-genome package . 70

5 Citation 79
5.1 Who else is using CNVkit? . 79

6 Indices and tables 81

Python Module Index 83

i

ii

CNVkit Documentation, Release 0.9.0

Author Eric Talevich

Contact eric.talevich@ucsf.edu

Source code GitHub

License Apache License 2.0

Packages PyPI | Docker | Galaxy | DNAnexus

Article PLOS Computational Biology

Q&A Biostars

CNVkit is a Python library and command-line software toolkit to infer and visualize copy number from targeted DNA
sequencing data. It is designed for use with hybrid capture, including both whole-exome and custom target panels,
and short-read sequencing platforms such as Illumina and Ion Torrent.

Contents 1

mailto:eric.talevich@ucsf.edu
https://github.com/etal/cnvkit
http://www.apache.org/licenses/LICENSE-2.0
https://pypi.python.org/pypi/CNVkit
https://hub.docker.com/r/etal/cnvkit/
https://testtoolshed.g2.bx.psu.edu/view/etal/cnvkit
https://platform.dnanexus.com/app/cnvkit_batch
http://dx.doi.org/10.1371/journal.pcbi.1004873
https://www.biostars.org/t/CNVkit/

CNVkit Documentation, Release 0.9.0

2 Contents

CHAPTER 1

Quick start

If you would like to quickly try CNVkit without installing it, try our app on DNAnexus.

To run CNVkit on your own machine, keep reading.

Install CNVkit

Download the source code from GitHub:

https://github.com/etal/cnvkit

And read the README file.

Download the reference genome

Go to the UCSC Genome Bioinformatics website and download:

1. Your species’ reference genome sequence, in FASTA format [required]

2. Gene annotation database, via RefSeq or Ensembl, in “flat” format (e.g. refFlat.txt) [optional]

You probably already have the reference genome sequence. If your species’ genome is not available from UCSC,
use whatever reference sequence you have. CNVkit only requires that your reference genome sequence be in FASTA
format. Both the reference genome sequence and the annotation database must be single, uncompressed files.

Sequencing-accessible regions: If your reference genome is the UCSC human genome hg19, a BED file of the
sequencing-accessible regions is included in the CNVkit distribution as data/access-5kb-mappable.hg19.
bed. If you’re not using hg19, consider building the “access” file yourself from your reference genome sequence (say,
mm10.fasta) using the access command:

cnvkit.py access mm10.fasta -s 10000 -o access-10kb.mm10.bed

3

https://platform.dnanexus.com/app/cnvkit_batch
https://github.com/etal/cnvkit
http://hgdownload.soe.ucsc.edu/downloads.html
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refFlat.txt.gz

CNVkit Documentation, Release 0.9.0

We’ll use this file in the next step to ensure off-target bins (“antitargets”) are allocated only in chromosomal regions
that can be mapped.

Gene annotations: The gene annotations file (refFlat.txt) is useful to apply gene names to your baits BED file, if the
BED file does not already have short, informative names for each bait interval. This file can be used in the next step.

If your targets look like:

chr1 1508981 1509154
chr1 2407978 2408183
chr1 2409866 2410095

Then you want refFlat.txt.

Otherwise, if they look like:

chr1 1508981 1509154 SSU72
chr1 2407978 2408183 PLCH2
chr1 2409866 2410095 PLCH2

Then you don’t need refFlat.txt.

Map sequencing reads to the reference genome

If you haven’t done so already, use a sequence mapping/alignment program such as BWA to map your sequencing
reads to the reference genome sequence.

You should now have one or BAM files corresponding to individual samples.

Build a reference from normal samples and infer tumor copy ratios

Here we’ll assume the BAM files are a collection of “tumor” and “normal” samples, although germline disease samples
can be used equally well in place of tumor samples.

CNVkit uses the bait BED file (provided by the vendor of your capture kit), reference genome sequence, and
sequencing-accessible regions along with your BAM files to:

1. Create a pooled reference of per-bin copy number estimates from several normal samples; then

2. Use this reference in processing all tumor samples that were sequenced with the same platform and library prep.

All of these steps are automated with the batch command. Assuming normal samples share the suffix “Normal.bam”
and tumor samples “Tumor.bam”, a complete command could be:

cnvkit.py batch *Tumor.bam --normal *Normal.bam \
--targets my_baits.bed --fasta hg19.fasta \
--access data/access-5kb-mappable.hg19.bed \
--output-reference my_reference.cnn --output-dir example/

See the built-in help message to see what these options do, and for additional options:

cnvkit.py batch -h

If you have no normal samples to use for the reference, you can create a “flat” reference which assumes equal coverage
in all bins by using the --normal/-n flag without specifying any additional BAM files:

4 Chapter 1. Quick start

http://bio-bwa.sourceforge.net/

CNVkit Documentation, Release 0.9.0

cnvkit.py batch *Tumor.bam -n -t my_baits.bed -f hg19.fasta \
--access data/access-5kb-mappable.hg19.bed \
--output-reference my_flat_reference.cnn -d example2/

In either case, you should run this command with the reference genome sequence FASTA file to extract GC and Re-
peatMasker information for bias corrections, which enables CNVkit to improve the copy ratio estimates even without
a paired normal sample.

If your targets are missing gene names, you can add them here with the --annotate argument:

cnvkit.py batch *Tumor.bam -n *Normal.bam -t my_baits.bed -f hg19.fasta \
--annotate refFlat.txt --access data/access-5kb-mappable.hg19.bed \
--output-reference my_flat_reference.cnn -d example3/

Note: Which BED file should I use?

• target vs. bait BED files: For hybrid capture, the targeted regions (or “primary targets”) are the genomic regions
your capture kit attempts to ensure are well covered, e.g. exons of genes of interest. The baited regions (or
“capture targets”) are the genomic regions your kit actually captures, usually including about 50bp flanking
either side of each target. Give CNVkit the bait/capture BED file, not the primary targets.

• For Whole-Genome Sequencing (WGS), use the batch --method wgs option and optionally give the
genome’s “access” file – if not given, it will be calculated from the genome sequence FASTA file.

• For Targeted Amplicon Sequencing (TAS), use the batch --method amplicon option and give the target
BED file.

Next steps

You can reuse the reference file you’ve previously constructed to extract copy number information from additional
tumor sample BAM files, without repeating the steps above. Assuming the new tumor samples share the suffix “Tu-
mor.bam” (and let’s also spread the workload across all available CPUs with the -p option, and generate some figures):

cnvkit.py batch *Tumor.bam -r my_reference.cnn -p 0 --scatter --diagram -d example4/

The coordinates of the target and antitarget bins, the gene names for the targets, and the GC and RepeatMasker
information for bias corrections are automatically extracted from the reference .cnn file you’ve built.

Now, starting a project from scratch, you could follow any of these approaches:

• Run batch as above with all tumor/test and normal/control samples specified as they are, and hope for the best.
(This should usually work fine.)

• For the careful: Run batch with just the normal samples specified as normal, yielding coverage .cnn files
and a pooled reference. Inspect the coverages of all samples with the metrics command, eliminating any
poor-quality samples and choosing a larger or smaller antitarget bin size if necessary. Build an updated pooled
reference using batch or coverage and reference (see Copy number calling pipeline), coordinating your work in
a Makefile, Rakefile, or similar build tool.

– See also: Ten Simple Rules for Reproducible Computational Research

• For the power user: Run batch with all samples specified as tumor samples, using -n by itself to build a
flat reference, yielding coverages, copy ratios, segments and optionally plots for all samples, both tumor and
normal. Inspect the “rough draft” outputs and determine an appropriate strategy to build and use a pooled
reference to re-analyze the samples – ideally coordinated with a build tool as above.

1.5. Next steps 5

https://en.wikipedia.org/wiki/Makefile
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003285

CNVkit Documentation, Release 0.9.0

• Use a framework like bcbio-nextgen to coordinate the complete sequencing data analysis pipeline.

See the command-line usage pages for additional visualization, reporting and import/export commands in CNVkit.

6 Chapter 1. Quick start

https://bcbio-nextgen.readthedocs.io/

7

CNVkit Documentation, Release 0.9.0

CHAPTER 2

Command line usage

Copy number calling pipeline

8 Chapter 2. Command line usage

CNVkit Documentation, Release 0.9.0

Each operation is invoked as a sub-command of the main script, cnvkit.py. A listing of all sub-commands can
be obtained with cnvkit --help or -h, and the usage information for each sub-command can be shown with the
--help or -h option after each sub-command name:

cnvkit.py -h
cnvkit.py target -h

A sensible output file name is normally chosen if it isn’t specified, except in the case of the text reporting commands,
which print to standard output by default, and the matplotlib-based plotting commands (not diagram), which will
display the plots interactively on the screen by default.

batch

Run the CNVkit pipeline on one or more BAM files:

From baits and tumor/normal BAMs
cnvkit.py batch *Tumor.bam --normal *Normal.bam \

--targets my_baits.bed --annotate refFlat.txt \
--fasta hg19.fasta --access data/access-5kb-mappable.hg19.bed \
--output-reference my_reference.cnn --output-dir results/ \
--diagram --scatter

Reusing a reference for additional samples
cnvkit.py batch *Tumor.bam -r Reference.cnn -d results/

Reusing targets and antitargets to build a new reference, but no analysis
cnvkit.py batch -n *Normal.bam --output-reference new_reference.cnn \

-t my_targets.bed -a my_antitargets.bed --male-reference \
-f hg19.fasta -g data/access-5kb-mappable.hg19.bed

With the -p option, process each of the BAM files in parallel, as separate subprocesses. The status messages logged
to the console will be somewhat disorderly, but the pipeline will take advantage of multiple CPU cores to complete
sooner.

cnvkit.py batch *.bam -r my_reference.cnn -p 8

The pipeline executed by the batch command is equivalent to:

cnvkit.py target baits.bed --split [--annotate refFlat.txt --short-names] -o my_
→˓targets.bed
cnvkit.py access baits.bed --fasta hg19.fa -o access.hg19.bed
cnvkit.py antitarget my_targets.bed --access access.hg19.bed -o my_antitargets.bed

For each sample...
cnvkit.py coverage Sample.bam my_targets.bed -o Sample.targetcoverage.cnn
cnvkit.py coverage Sample.bam my_antitargets.bed -o Sample.antitargetcoverage.cnn

With all normal samples...
cnvkit.py reference *Normal.{,anti}targetcoverage.cnn --fasta hg19.fa [--male-
→˓reference] -o my_reference.cnn

For each tumor sample...
cnvkit.py fix Sample.targetcoverage.cnn Sample.antitargetcoverage.cnn my_reference.
→˓cnn -o Sample.cnr
cnvkit.py segment Sample.cnr -o Sample.cns

Optionally, with --scatter and --diagram

2.1. Copy number calling pipeline 9

CNVkit Documentation, Release 0.9.0

cnvkit.py scatter Sample.cnr -s Sample.cns -o Sample-scatter.pdf
cnvkit.py diagram Sample.cnr -s Sample.cns [--male-reference] -o Sample-diagram.pdf

This is for hybrid capture protocols in which both on- and off-target reads can be used for copy number detection. To
run alternative pipelines for targeted amplicon sequencing or whole genome sequencing, use the --method option
with value amplicon or wgs, respectively. The default is hybrid.

See the rest of the commands below to learn about each of these steps and other functionality in CNVkit.

target

Prepare a BED file of baited regions for use with CNVkit.

cnvkit.py target my_baits.bed --annotate refFlat.txt --split -o my_targets.bed

The BED file should be the baited genomic regions for your target capture kit, as provided by your vendor. Since
these regions (usually exons) may be of unequal size, the --split option divides the larger regions so that the
average bin size after dividing is close to the size specified by --average-size. If any of these three (--split,
--annotate, or --short-names) flags are used, a new target BED file will be created; otherwise, the provided
target BED file will be used as-is.

Bin size and resolution

If you need higher resolution, you can select a smaller average size for your target and antitarget bins.

Exons in the human genome have an average size of about 200bp. The target bin size default of 267 is chosen so that
splitting larger exons will produce bins with a minimum size of 200. Since bins that contain fewer reads result in a
noisier copy number signal, this approach ensures the “noisiness” of the bins produced by splitting larger exons will
be no worse than average.

Setting the average size of target bins to 100bp, for example, will yield about twice as many target bins, which might
result in higher-resolution segmentation. However, the number of reads counted in each bin will be reduced by about
half, increasing the variance or “noise” in bin-level coverages. An excess of noisy bins can make visualization difficult,
and since the noise may not be Gaussian, especially in the presence of many bins with zero reads, the CBS algorithm
could produce less accurate segmentation results on low-coverage samples. In practice we see good results with an
average of 200-300 reads per bin; we therefore recommend an overall on-target sequencing coverage depth of at least
200x to 300x with a read length of 100 to justify reducing the average target bin size to 100bp.

Adding gene names

In case the vendor BED file does not label each region with a corresponding gene name, the --annotate option can
add or replace these labels. Gene annotation databases, e.g. RefSeq or Ensembl, are available in “flat” format from
UCSC (e.g. refFlat.txt for hg19).

In other cases the region labels are a combination of human-readable gene names and database accession codes, sepa-
rated by commas (e.g. “ref|BRAF,mRNA|AB529216,ens|ENST00000496384”). The --short-names option splits
these accessions on commas, then chooses the single accession that covers in the maximum number of consecutive
regions that share that accession, and applies it as the new label for those regions. (You may find it simpler to just
apply the refFlat annotations.)

10 Chapter 2. Command line usage

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refFlat.txt.gz

CNVkit Documentation, Release 0.9.0

access

Calculate the sequence-accessible coordinates in chromosomes from the given reference genome, output as a BED
file.

cnvkit.py access hg19.fa -x excludes.bed -o access-hg19.bed

Many fully sequenced genomes, including the human genome, contain large regions of DNA that are inaccessable to
sequencing. (These are mainly the centromeres, telomeres, and highly repetitive regions.) In the FASTA reference
genome sequence these regions are filled in with large stretches of “N” characters. These regions cannot be mapped
by resequencing, so we will want to avoid them when calculating the antitarget bin locations (for example).

The access command computes the locations of the accessible sequence regions for a given reference genome based
on these masked-out sequences, treating long spans of ‘N’ characters as the inaccessible regions and outputting the
coordinates of the regions between them.

Other known unmappable or poorly sequenced regions can be specified for exclusion with the -x option. This option
can be used more than once to exclude several BED files listing different sets of regions. For example, “excludable”
regions of poor mappability have been precalculated by others and are available from the UCSC FTP Server (see here
for hg19).

If there are many small excluded/inaccessible regions in the genome, then small, less-reliable antitarget bins would
be squeezed into the remaining accessible regions. The -s option tells the script to ignore short regions that would
otherwise be excluded as inaccessible, allowing larger antitarget bins to overlap them.

An “access” file precomputed for the UCSC reference human genome build hg19, with some know low-
mappability regions excluded, is included in the CNVkit source distribution under the data/ directory (data/
access-5kb-mappable.hg19.bed).

antitarget

Given a “target” BED file that lists the chromosomal coordinates of the tiled regions used for targeted resequencing,
derive a BED file off-target/”antitarget” regions.

cnvkit.py antitarget my_targets.bed -g data/access-5kb-mappable.hg19.bed -o my_
→˓antitargets.bed

Certain genomic regions cannot be mapped by short-read resequencing (see access); we can avoid them when calcu-
lating the antitarget locations by passing the locations of the accessible sequence regions with the -g or --access
option. CNVkit will then compute “antitarget” bins only within the accessible genomic regions specified in the “ac-
cess” file.

CNVkit uses a cautious default off-target bin size that, in our experience, will typically include more reads than the
average on-target bin. However, we encourage the user to examine the coverage statistics reported by CNVkit and
specify a properly calculated off-target bin size for their samples in order to maximize copy number information.

Off-target bin size

An appropriate off-target bin size can be computed as the product of the average target region size and the fold-
enrichment of sequencing reads in targeted regions, such that roughly the same number of reads are mapped to on–
and off-target bins on average — roughly proportional to the level of on-target enrichment.

The preliminary coverage information can be obtained with the script CalculateHsMetrics in the Picard suite (http:
//picard.sourceforge.net/), or from the console output of the CNVkit coverage command when run on the target regions.

2.1. Copy number calling pipeline 11

ftp://hgdownload.soe.ucsc.edu/goldenPath/
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
http://picard.sourceforge.net/
http://picard.sourceforge.net/

CNVkit Documentation, Release 0.9.0

Note: The generated off-target bins are given the label “Antitarget” in CNVkit versions 0.9.0 and later. In earlier
versions, the label “Background” was used – CNVkit will still accept this label for compatibility.

coverage

Calculate coverage in the given regions from BAM read depths.

By default, coverage is calculated via mean read depth from a pileup. Alternatively, using the –count option counts
the number of read start positions in the interval and normalizes to the interval size.

cnvkit.py coverage Sample.bam targets.bed -o Sample.targetcoverage.cnn
cnvkit.py coverage Sample.bam antitargets.bed -o Sample.antitargetcoverage.cnn

Summary statistics of read counts and their binning are printed to standard error when CNVkit finishes calculating the
coverage of each sample (through either the batch or coverage commands).

BAM file preparation

For best results, use an aligner such as BWA-MEM, with the option to mark secondary mappings of reads, and flag
PCR duplicates with a program such as SAMBLASTER, SAMBAMBA, or the MarkDuplicates script in Picard tools,
so that CNVkit will skip these reads when calculating read depth.

You will probably want to index the finished BAM file using samtools or SAMBAMBA. But if you haven’t done this
beforehand, CNVkit will automatically do it for you.

Note: The BAM file must be sorted. CNVkit will check that the first few reads are sorted in positional order, and
raise an error if they are not. However, CNVkit might not notice if reads later in the file are unsorted; it will just
silently ignore the out-of-order reads and the coverages will be zero after that point. So be safe, and sort your BAM
file properly.

Note: If you’ve prebuilt the BAM index file (.bai), make sure its timestamp is later than the BAM file’s. CNVkit
will automatically index the BAM file if needed – that is, if the .bai file is missing, or if the timestamp of the .bai
file is older than that of the corresponding .bam file. This is done in case the BAM file has changed after the index
was initially created. (If the index is wrong, CNVkit will not catch this, and coverages will be mysteriously truncated
to zero after a certain point.) However, if you copy a set of BAM files and their index files (.bai) together over a
network, the smaller .bai files will typically finish downloading first, and so their timestamp will be earlier than the
corresponding BAM or FASTA file. CNVkit will then consider the index files to be out of date and will attempt to
rebuild them. To prevent this, use the Unix command touch to update the timestamp on the index files after all files
have been downloaded.

reference

Compile a copy-number reference from the given files or directory (containing normal samples). If given a reference
genome (-f option), also calculate the GC content and repeat-masked proportion of each region.

The reference can be constructed from zero, one or multiple control samples (see below).

A reference should be constructed specifically for each target capture panel, using a BED file listing the genomic
coordinates of the baited regions. Ideally, the control or “normal” samples used to build the reference should match

12 Chapter 2. Command line usage

http://bio-bwa.sourceforge.net/
https://github.com/GregoryFaust/samblaster
http://lomereiter.github.io/sambamba/
http://picard.sourceforge.net/
http://samtools.sourceforge.net/

CNVkit Documentation, Release 0.9.0

the type of sample (e.g. FFPE-extracted or fresh DNA) and library preparation protocol or kit used for the test (e.g.
tumor) samples.

For target amplicon or whole-genome sequencing protocols, the “antitarget” BED and .cnn files can be omitted.

Paired or pooled normals

Provide the *.targetcoverage.cnn and *.antitargetcoverage.cnn files created by the coverage com-
mand:

cnvkit.py reference *coverage.cnn -f ucsc.hg19.fa -o Reference.cnn

To analyze a cohort sequenced on a single platform, we recommend combining all normal samples into a pooled ref-
erence, even if matched tumor-normal pairs were sequenced – our benchmarking showed that a pooled reference per-
formed slightly better than constructing a separate reference for each matched tumor-normal pair. Furthermore, even
matched normals from a cohort sequenced together can exhibit distinctly different copy number biases (see Plagnol et
al. 2012 and Backenroth et al. 2014); reusing a pooled reference across the cohort provides some consistency to help
diagnose such issues.

Notes on sample selection:

• You can use cnvkit.py metrics *.cnr -s *.cns to see if any samples are especially noisy. See the
metrics command.

• CNVkit will usually call larger CNAs reliably down to about 10x on-target coverage, but there will tend to be
more spurious segments, and smaller-scale or subclonal CNAs can be hard to infer below that point. This is well
below the minimum coverage thresholds typically used for SNV calling, especially for targeted sequencing of
tumor samples that may have significant normal-cell contamination and subclonal tumor-cell populations. So, a
normal sample that passes your other QC checks will probably be OK to use in building a CNVkit reference –
assuming it was sequenced on the same platform as the other samples you’re calling.

If normal samples are not available, it will sometimes be acceptable to build the reference from a collection of tumor
samples. You can use the scatter command on the raw .cnn coverage files to help choose samples with relatively
minimal and non-recurrent CNVs for use in the reference.

With no control samples

Alternatively, you can create a “flat” reference of neutral copy number (i.e. log2 0.0) for each probe from the target
and antitarget interval files. This still computes the GC content of each region if the reference genome is given.

cnvkit.py reference -o FlatReference.cnn -f ucsc.hg19.fa -t targets.bed -a
→˓antitargets.bed

Possible uses for a flat reference include:

1. Extract copy number information from one or a small number of tumor samples when no suitable reference or
set of normal samples is available. The copy number calls will not be quite as accurate, but large-scale CNVs
should still be visible.

2. Create a “dummy” reference to use as input to the batch command to process a set of normal samples. Then,
create a “real” reference from the resulting *.targetcoverage.cnn and *.antitargetcoverage.
cnn files, and re-run batch on a set of tumor samples using this updated reference.

3. Evaluate whether a given paired or pooled reference is suitable for an analysis by repeating the CNVkit analysis
with a flat reference and comparing the CNAs found with both the original and flat reference for the same
samples.

2.1. Copy number calling pipeline 13

http://dx.doi.org/10.1093/bioinformatics/bts526
http://dx.doi.org/10.1093/bioinformatics/bts526
http://dx.doi.org/10.1093/nar/gku345

CNVkit Documentation, Release 0.9.0

How it works

CNVkit uses robust methods to extract a usable signal from the reference samples.

Each input sample is first median-centered, then read-depth bias corrections (the same used in the fix command) are
performed on each of the normal samples separately.

The samples’ median-centered, bias-corrected log2 read depth values are then combined to take the weighted average
(Tukey’s biweight location) and spread (Tukey’s biweight midvariance) of the values at each on– and off-target ge-
nomic bin among all samples. (For background on these statistical methods see Lax (1985) and Randal (2008).) To
adjust for the lower statistical reliability of a smaller number of samples for estimating parameters, a “pseudocount”
equivalent to one sample of neutral copy number is included in the dataset when calculating these values.

These values are saved in the output “reference.cnn” file as the “log2” and “spread” columns, indicating the expected
read depth and the reliability of this estimate.

If a FASTA file of the reference genome is given, for each genomic bin the fraction of GC (proportion of “G” and “C”
characters among all “A”, “T”, “G” and “C” characters in the subsequence, ignoring “N” and any other ambiguous
characters) and repeat-masked values (proportion of lowercased non-“N” characters in the sequence) are calculated
and stored in the output “reference.cnn” file as columns “gc” and “rmask”. For efficiency, the samtools FASTA index
file (.fai) is used to locate the binned sequence regions in the FASTA file. If the GC or RepeatMasker bias corrections
are skipped using the --no-gc or --no-rmask options, then those columns are omitted from the output file; if
both are skipped, then the genome FASTA file (if provided) is not examined at all.

The result is a reference copy-number profile that can then be used to correct other individual samples.

Note: As with BAM files, CNVkit will automatically index the FASTA file if the corresponding .fai file is missing or
out of date. If you have copied the FASTA file and its index together over a network, you may need to use the touch
command to update the .fai file’s timestamp so that CNVkit will recognize it as up-to-date.

fix

Combine the uncorrected target and antitarget coverage tables (.cnn) and correct for biases in regional coverage and
GC content, according to the given reference. Output a table of copy number ratios (.cnr).

cnvkit.py fix Sample.targetcoverage.cnn Sample.antitargetcoverage.cnn Reference.cnn -
→˓o Sample.cnr

How it works

The “observed” on- and off-target read depths are each median-centered and bias-corrected, as when constructing the
reference. The corresponding “expected” normalized log2 read-depth values from the reference are then subtracted
for each set of bins.

Bias corrections use the GC and RepeatMasker information from the “gc” and “rmask” columns of the reference .cnn
file; if those are missing (i.e. the reference was built without those corrections), fix will skip them too (with a
warning). If you constructed the reference but then called fix with a different set of bias correction flags, the biases
could be over- or under-corrected in the test sample – so use the options --no-gc, --no-rmask and --no-edge
consistently or not at all.

CNVkit filters out bins failing certain predefined criteria: those where the reference log2 read depth is below a thresh-
old (default -5), or the spread of read depths among all normal samples in the reference is above a threshold (default
1.0).

A weight is assigned to each remaining bin depending on:

14 Chapter 2. Command line usage

http://dx.doi.org/10.1080/01621459.1985.10478177
http://dx.doi.org/10.1016/j.csda.2008.04.016

CNVkit Documentation, Release 0.9.0

1. The size of the bin;

2. The deviation of the bin’s log2 value in the reference from 0;

3. The “spread” of the bin in the reference.

(The latter two only apply if at least one normal/control sample was used to build the reference.)

Finally, the corrected on- and off-target bin-level copy ratios with associated weights are concatenated, sorted, and
written to a .cnr file.

segment

Infer discrete copy number segments from the given coverage table:

cnvkit.py segment Sample.cnr -o Sample.cns

By default this uses the circular binary segmentation algorithm (CBS), which performed best in our benchmarking.
But with the -m option, the faster HaarSeg (haar) or Fused Lasso (flasso) algorithms can be used instead.

If you do not have R or the R package dependencies installed, but otherwise do have CNVkit properly installed, then
haar will work for you. The other two methods use R internally.

Fused Lasso additionally performs significance testing to distinguish CNAs from regions of neutral copy number,
whereas CBS and HaarSeg by themselves only identify the supported segmentation breakpoints. Fused Lasso has
been reported to work well on whole-exome and whole-genome data, while HaarSeg is less suited to those larger
datasets and better on target panels.

call

Given segmented log2 ratio estimates (.cns), derive each segment’s absolute integer copy number using either:

• A list of threshold log2 values for each copy number state (-m threshold), or rescaling - for a given known
tumor cell fraction and normal ploidy, then simple rounding to the nearest integer copy number (-m clonal).

cnvkit.py call Sample.cns -o Sample.call.cns
cnvkit.py call Sample.cns -y -m threshold -t=-1.1,-0.4,0.3,0.7 -o Sample.call.cns
cnvkit.py call Sample.cns -y -m clonal --purity 0.65 -o Sample.call.cns
cnvkit.py call Sample.cns -y -v Sample.vcf -m clonal --purity 0.7 -o Sample.call.cns

The output is another .cns file, with an additional “cn” column listing each segment’s absolute integer copy number.
This .cns file is still compatible with the other CNVkit commands that accept .cns files, and can be plotted the same
way with the scatter, heatmap and diagram commands. To get these copy number values in another format, e.g. BED
or VCF, see the export command.

With a VCF file of SNVs (-v/--vcf), the b-allele frequencies of SNPs in the tumor sample are extracted and averaged
for each segment:

cnvkit.py call Sample.cns -y -v Sample.vcf -o Sample.call.cns

The segment b-allele frequencies are also used to calculate major and minor allele-specific integer copy numbers (see
below).

Alternatively, the -m none option performs rescaling, re-centering, and extracting b-allele frequencies from a VCF
(if requested), but does not add a “cn” column or allele copy numbers:

cnvkit.py call Sample.cns -v Sample.vcf --purity 0.8 -m none -o Sample.call.cns

2.1. Copy number calling pipeline 15

http://webee.technion.ac.il/people/YoninaEldar/Info/software/HaarSeg.htm
http://statweb.stanford.edu/~tibs/cghFLasso.html

CNVkit Documentation, Release 0.9.0

Transformations

If there is a known level of normal-cell DNA contamination in the analyzed tumor sample (see the page on tumor
heterogeneity), you can opt to rescale the log2 copy ratio estimates in your .cnr or .cns file to remove the impact of this
contamination, so the resulting log2 ratio values in the file match what would be observed in a completely pure tumor
sample.

With the --purity option, log2 ratios are rescaled to the value that would be seen a completely pure, uncontaminated
sample. The observed log2 ratios in the input .cns file are treated as a mix of some fraction of tumor cells (specified by
--purity), possibly with altered copy number, and a remainder of normal cells with neutral copy number (specified
by --ploidy for autosomes; by default, diploid autosomes, haploid Y or X/Y depending on reference sex). This
equation is rearranged to find the absolute copy number of the tumor cells alone, rounded to the nearest integer.

The expected and observed ploidy of the sex chromosomes (X and Y) is different, so it’s important to specify
-y/--male-reference if a male reference was used; the sample sex can be specified if known, otherwise it
will be guessed from the average log2 ratio of chromosome X.

When a VCF file containing SNV calls for the same tumor sample (and optionally a matched normal) is given using
the -v/--vcf option, the b-allele frequencies (BAFs) of the heterozygous, non-somatic SNVs falling within each
segment are mirrored, averaged, and listed in the output .cns file as an additional “baf” column (using the same logic
as export nexus-ogt). If --purity was specified, then the BAF values are also rescaled.

The call command can also optionally re-center the log2 values, though this will typically not be needed since the
.cnr files are automatically median-centered by the fix command when normalizing to a reference and correcting biases.
However, if the analyzed genome is highly aneuploid and contains widespread copy number losses or gains unequally,
the default median centering may place copy-number-neutral regions slightly above or below the expected log2 value
of 0.0. To address such cases, alternative centering approaches can be specified with the --center option:

cnvkit.py call -m none Sample.cns --center mode

Calling methods

After the above adjustments, the “threshold” and “clonal” methods calculate the absolute integer copy number of each
segment.

The “clonal” method converts the log2 values to absolute scale using the given --ploidy, then simply rounds the
absolute copy number values to the nearest integer. This method is reasonable for germline samples, highly pure tumor
samples (e.g. cell lines), or when the tumor fraction is accurately known and specified with --purity.

The “threshold” method applies fixed log2 ratio cutoff values for each integer copy number state. This approach can
be an alternative to specifying and adjusting for the tumor cell fraction or purity directly. However, if --purity is
specified, then the log2 values will still be rescaled before applying the copy number thresholds.

The default threshold values are reasonably “safe” for a tumor sample with purity of at least 30%. The inner cutoffs
of +0.2 and -0.25 are sensitive enough to detect a single-copy gain or loss in a diploid tumor with purity (or subclone
cellularity) as low as 30%. But the outer cutoffs of -1.1 and +0.7 assume 100% purity, so a more extreme copy
number, i.e. homozygous deletion (0 copies) or multi-copy amplification (4+ copies), is only assigned to a CNV if
there is strong evidence for it. For germline samples, the -t values shown below (or -m clonal) may yield more
precise calls.

The thresholds map to integer copy numbers in order, starting from zero: log2 ratios up to the first threshold value are
assigned a copy number 0, log2 ratios between the first and second threshold values get copy number 1, and so on.

16 Chapter 2. Command line usage

CNVkit Documentation, Release 0.9.0

If log2 value is up to Copy number
-1.1 0
-0.4 1
0.3 2
0.7 3
... ...

For homogeneous samples of known ploidy, you can calculate cutoffs from scatch by log-transforming the integer
copy number values of interest, plus .5 (for rounding), divided by the ploidy. For a diploid genome:

>>> import numpy as np
>>> copy_nums = np.arange(5)
>>> print(np.log2((copy_nums+.5) / 2)
[-2. -0.4150375 0.32192809 0.80735492 1.169925]

Or, in R:

> log2((0:4 + .5) / 2)
[1] -2.0000000 -0.4150375 0.3219281 0.8073549 1.1699250

For arbitrary purity and ploidy:

> purity = 0.6
> ploidy = 4
> log2((1 - purity) + purity * (0:6 + .5) / ploidy)
[1] -1.0740006 -0.6780719 -0.3677318 -0.1124747 0.1043367 0.2927817 0.4594316

Allele frequencies and counts

If a VCF file is given using the -v/--vcf option, then for each segment containing SNVs in the VCF, an average
b-allele frequency (BAF) within that segment is calculated, and output in the “baf” column. Allele-specific integer
copy number values are then inferred from the total copy number and BAF, and output in columns “cn1” and “cn2”.
This calculation uses the same method as PSCBS: total copy number is multiplied by the BAF, and rounded to the
nearest integer.

Allelic imbalance, including copy-number-neutral loss of heterozygosity (LOH), is then apparent when a segment’s
“cn1” and “cn2” fields have different values.

Filtering segments

New in version 0.8.0.

Finally, segments can be filtered according to several criteria, which may be combined:

• Integer copy number (cn), merging adjacent with the same called value.

• Keeping only high-level amplifications (5 copies or more) and homozygous deletions (0 copies) (ampdel).

• Confidence interval overlapping zero (ci).

• Standard error of the mean (sem), a parametric estimate of confidence intervals which behaves similarly.

In each case, adjacent segments with the same value according to the given criteria are merged together and the
column values are recalculated appropriately. Segments on different chromosomes or with different allele-specific
copy number values will not be merged, even if the total copy number is the same.

2.1. Copy number calling pipeline 17

http://bioinformatics.oxfordjournals.org/content/27/15/2038.short

CNVkit Documentation, Release 0.9.0

Plots and graphics

scatter

Plot bin-level log2 coverages and segmentation calls together. Without any further arguments, this plots the genome-
wide copy number in a form familiar to those who have used array CGH.

cnvkit.py scatter Sample.cnr -s Sample.cns
Shell shorthand
cnvkit.py scatter -s TR_95_T.cn{s,r}

The options --chromosome and --gene (or their single-letter equivalents) focus the plot on the specified region:

cnvkit.py scatter -s Sample.cn{s,r} -c chr7
cnvkit.py scatter -s Sample.cn{s,r} -c chr7:140434347-140624540
cnvkit.py scatter -s Sample.cn{s,r} -g BRAF

In the latter two cases, the genes in the specified region or with the specified names will be highlighted and labeled in
the plot. The --width (-w) argument determines the size of the chromosomal regions to show flanking the selected
region. Note that only targeted genes can be highlighted and labeled; genes that are not included in the list of targets
are not labeled in the .cnn or .cnr files and are therefore invisible to CNVkit.

The arguments -c and -g can be combined to e.g. highlight specific genes in a larger context:

Show a chromosome arm, highlight one gene
cnvkit.py scatter -s Sample.cn{s,r} -c chr5:100-50000000 -g TERT
Show the whole chromosome, highlight two genes
cnvkit.py scatter -s Sample.cn{s,r} -c chr7 -g BRAF,MET
Highlight two genes in a specified range
cnvkit.py scatter -s TR_95_T.cn{s,r} -c chr12:50000000-80000000 -g CDK4,MDM2

18 Chapter 2. Command line usage

CNVkit Documentation, Release 0.9.0

When a chromosomal region is plotted with CNVkit’s “scatter” command , the size of the plotted datapoints is propor-
tional to the weight of each point used in segmentation – a relatively small point indicates a less reliable bin. Therefore,
if you see a cluster of smaller points in a short segment (or where you think there ought to be a segment, but there
isn’t one), then you can cast some doubt on the copy number call in that region. The dispersion of points around the
segmentation line also visually indicates the level of noise or uncertainty.

To create multiple region-specific plots at once, the regions of interest can be listed in a separate file and passed to the
scattter command with the -l/--range-list option. This is equivalent to creating the plots separately with
the -c option and then combining the plots into a single multi-page PDF.

The bin-level log2 ratios or coverages can also be plotted without segmentation calls:

cnvkit.py scatter Sample.cnr

This can be useful for viewing the raw, un-corrected coverage depths when deciding which samples to use to build a
profile, or simply to see the coverages without being helped/biased by the called segments.

The --trend option (-t) adds a smoothed trendline to the plot. This is fairly superfluous if a valid segment file
is given, but could be helpful if the CBS dependency is not available, or if you’re skeptical of the segmentation in a
region.

2.2. Plots and graphics 19

CNVkit Documentation, Release 0.9.0

SNV b-allele frequencies

Loss of heterozygosity (LOH) can be viewed alongside copy number by passing variants as a VCF file with the -v
option. Heterozygous SNP allelic frequencies are shown in a subplot below the CNV scatter plot.

cnvkit.py scatter Sample.cnr -s Sample.cns -v Sample.vcf

If only the VCF file is given by itself, just plot the allelic frequencies:

cnvkit.py scatter -v Sample.vcf

Given segments, show the mean b-allele frequency values above and below 0.5 of SNVs falling within each segment.
Divergence from 0.5 indicates LOH in the tumor sample.

cnvkit.py scatter -s Sample.cns -v Sample.vcf -i TumorID -n NormalID

Regions with LOH are reflected in heterozygous germline SNPs in the tumor sample with allele frequencies shifted
away from the expected 0.5 value. Given a VCF with only the tumor sample called, it is difficult to focus on just the
informative SNPs because it’s not known which SNVs are present and heterozygous in normal, germline cells. Better
results can be had by giving CNVkit more information:

• Call somatic mutations using paired tumor and normal samples. In the VCF, the somatic variants should be
flagged in the INFO column with the string “SOMATIC”. (MuTect does this automatically.) Then CNVkit will
skip these for plotting.

• Add a “PEDIGREE” tag to the VCF header, listing the tumor sample as “Derived” and the normal as “Origi-
nal”. (MuTect doesn’t do this, but it does add a nonstandard GATK header that CNVkit can extract the same
information from.)

• In lieu of a PEDIGREE tag, tell CNVkit which sample IDs are the tumor and normal using the -i and -n
options, respectively.

• If no paired normal sample is available, you can still filter for likely informative SNPs by intersecting your
tumor VCF with a set of known SNPs such as 1000 Genomes, ESP6500, or ExAC. Drop the private SNVs that
don’t appear in these databases to create a VCF more amenable to LOH detection.

diagram

Draw copy number (either individual bins (.cnn, .cnr) or segments (.cns)) on chromosomes as an ideogram. If both the
bin-level log2 ratios and segmentation calls are given, show them side-by-side on each chromosome (segments on the
left side, bins on the right side).

cnvkit.py diagram Sample.cnr
cnvkit.py diagram -s Sample.cns
cnvkit.py diagram -s Sample.cns Sample.cnr

If bin-level log2 ratios are provided (.cnr), genes with log2 ratio values beyond a fixed threshold will be labeled on
the plot. This plot style works best with target panels of a few hundred genes at most; with whole-exome sequencing
there are often so many genes affected by CNAs that the individual gene labels become difficult to read.

20 Chapter 2. Command line usage

CNVkit Documentation, Release 0.9.0

If only segments are provided (-s), gene labels are not shown. This plot is then equivalent to the heatmap command,
which effectively summarizes the segmented values from many samples.

By default, the sex chromosomes X and Y are colorized relative to the expected ploidy, i.e. for female samples
analyzed with a male reference, while the X chromosome has a copy ratio near +1.0 in the input .cnr and .cns files,
in the output diagram it will be shown as neutral copy number (white or faint colors) rather than a gain (red), because
the diploid X is expected. The sample sex can be specified with the -x/--sample-sex option, or will otherwise be
guessed automatically (see Chromosomal sex). This correction is done by default, but can be disabled with the option
--no-shift-xy.

heatmap

Draw copy number (either bins (.cnn, .cnr) or segments (.cns)) for multiple samples as a heatmap.

To get an overview of the larger-scale CNVs in a cohort, use the “heatmap” command on all .cns files:

cnvkit.py heatmap *.cns

2.2. Plots and graphics 21

CNVkit Documentation, Release 0.9.0

The color range can be subtly rescaled with the -d option to de-emphasize low-amplitude segments, which are likely
spurious CNAs:

cnvkit.py heatmap *.cns -d

22 Chapter 2. Command line usage

CNVkit Documentation, Release 0.9.0

A heatmap can also be drawn from bin-level log2 coverages or copy ratios (.cnn, .cnr), but this will be extremely slow
at the genome-wide level. Consider doing this with a smaller number of samples and only for one chromosome or
chromosomal region at a time, using the -c option:

cnvkit.py heatmap TR_9*T.cnr -c chr12 # Slow!
cnvkit.py heatmap TR_9*T.cnr -c chr7:125000000-145000000

2.2. Plots and graphics 23

CNVkit Documentation, Release 0.9.0

If an output file name is not specified with the -o option, an interactive matplotlib window will open, allowing you to
select smaller regions, zoom in, and save the image as a PDF or PNG file.

The samples are shown in the order there’s given on the command line. If you use “*.cns” then the filenames might
always be fetched alphabetically (depending on your operating system), but if you type them out in the order you like,
it should keep that order. You can use the Unix shell to pull the names out of a file on the fly, e.g.:

cnvkit.py heatmap `cat filenames.txt`

As with diagram, the sex chromosomes X and Y are colorized relative to the expected ploidy, based on the sample and
reference sex (see Chromosomal sex). This correction can be disabled with the option --no-shift-xy.

Customizing plots

The plots generated with the scatter and heatmap commands use the Python plotting library matplotlib.

To quickly adjust the displayed area of the genome in a plot, run either plotting command without the -o option to
generate an interactive plot in a new window. You can then resize that plot up to the full size of your screen, use the
plot window’s selection mode to select a smaller area of the genome, and use the plot window’s save button to save
the plot in your preferred format.

You can customize font sizes and other aspects of the plots by configuring matplotlib. If you’re running CNVkit on
the command line and not using it as a Python library, then you can just create a file in your home directory (or the
same directory as cnvkit.py) called .matplotlibrc. For example, to shrink the font size of the x- and y-axis
labels, put this line in the configuration file:

axes.labelsize : small

For more control, in the Python intepreter (or a script, or a Jupyter notebook), import the cnvlib package module and
call the do_scatter or do_heatmap function to create a plot. Then you can use matplotlib.pyplot to get the current axis
and modify the plot elements, change font sizes, or anything else you like:

from glob import glob
from matplotlib import pyplot as plt
import cnvlib

24 Chapter 2. Command line usage

http://matplotlib.org/users/customizing.html

CNVkit Documentation, Release 0.9.0

segments = map(cnvlib.read, glob("*.cns"))
ax = cnvlib.do_heatmap(segments)
ax.set_title("All my samples")
plt.rcParams["font.size"] = 9.0
plt.show()

Text and tabular reports

breaks

List the targeted genes in which a segmentation breakpoint occurs.

cnvkit.py breaks Sample.cnr Sample.cns

This helps to identify genes in which (a) an unbalanced fusion or other structural rearrangement breakpoint occured,
or (b) CNV calling is simply difficult due to an inconsistent copy number signal.

The output is a text table of tab-separated values, which is amenable to further processing by scripts and standard Unix
tools such as grep, sort, cut and awk.

Columns:

• gene, chromosome – as in .cns (see File formats), the gene where the breakpoint occurs and the chromosome it
lies on.

• location – the end of the segment to the left of the breakpoint, and start of the segment to the right.

• change – the difference in log2 values between the adjacent segments.

• probes_left, probes_right – the number of probes on each side of the breakpoint within the gene. (Not the same
as the number of probes supporting each segment; just the portion within the gene.)

For example, to get a list of the names of genes that contain a possible copy number breakpoint:

cnvkit.py breaks Sample.cnr Sample.cns | cut -f1 | sort -u > gene-breaks.txt

gainloss

Identify targeted genes with copy number gain or loss above or below a threshold.

cnvkit.py gainloss Sample.cnr
cnvkit.py gainloss Sample.cnr -s Sample.cns -t 0.4 -m 5 -y

If segments are given, the log2 ratio value reported for each gene will be the value of the segment covering the gene.
Where more than one segment overlaps the gene, i.e. if the gene contains a breakpoint, each segment’s value will be
reported as a separate row for the same gene. If a large-scale CNA covers multiple genes, each of those genes will be
listed individually.

If segments are not given, the median of the log2 ratio values of the bins within each gene will be reported as the
gene’s overall log2 ratio value. This mode will not attempt to identify breakpoints within genes.

The threshold (-t) and minimum number of bins (-m) options are used to control which genes are reported. For
example, a threshold of .2 (the default) will report single-copy gains and losses in a completely pure tumor sample (or
germline CNVs), but a lower threshold would be necessary to call somatic CNAs if significant normal-cell contami-
nation is present. Some likely false positives can be eliminated by dropping CNVs that cover a small number of bins

2.3. Text and tabular reports 25

CNVkit Documentation, Release 0.9.0

(e.g. with -m 3, genes where only 1 or 2 bins show copy number change will not be reported), at the risk of missing
some true positives.

Specify the reference sex (-y if male) to ensure CNVs on the X and Y chromosomes are reported correctly; otherwise,
a large number of spurious gains or losses on the sex chromosomes may be reported.

The output is a text table of tab-separated values, like that of breaks. Continuing the Unix example, we can try
gainloss both with and without the segment files, take the intersection of those as a list of “trusted” genes, and
visualize each of them with scatter:

cnvkit.py gainloss -y Sample.cnr -s Sample.cns | tail -n+2 | cut -f1 | sort > segment-
→˓gainloss.txt
cnvkit.py gainloss -y Sample.cnr | tail -n+2 | cut -f1 | sort > ratio-gainloss.txt
comm -12 ratio-gainloss.txt segment-gainloss.txt > trusted-gainloss.txt
for gene in `cat trusted-gainloss.txt`
do

cnvkit.py scatter -s Sample.cn{s,r} -g $gene -o Sample-$gene-scatter.pdf
done

(The point is that it’s possible.)

sex

Guess samples’ chromosomal sex from the relative coverage of chromosomes X and Y. A table of the sample name
(derived from the filename), inferred sex (string “Female” or “Male”), and log2 ratio value of chromosomes X and Y
is printed.

cnvkit.py sex *.cnn *.cnr *.cns
cnvkit.py sex -y *.cnn *.cnr *.cns

If there is any confusion in specifying either the sex of the sample or the construction of the reference copy number
profile, you can check what happened using the sex command. If the reference and intermediate .cnn files are
available (.targetcoverage.cnn and .antitargetcoverage.cnn, which are created before most of CNVkit’s corrections),
CNVkit can report the reference sex and the sample’s relative coverage of the X and Y chromosomes:

cnvkit.py sex reference.cnn Sample.targetcoverage.cnn Sample.antitargetcoverage.cnn

The output looks like this, where columns are filename, inferred sex, and ratio of chromosome X and Y log2 coverages
relative to autosomes:

cnv_reference.cnn Female -0.176 -1.061
Sample.targetcoverage.cnn Female -0.0818 -12.471
Sample.antitargetcoverage.cnn Female -0.265 -15.139

If the -y option was not specified when constructing the reference (e.g. cnvkit.py batch ...), then you have
a female reference, and in the final plots you will see chrX with neutral copy number in female samples and around -1
log2 ratio in male samples.

metrics

Calculate the spread of bin-level copy ratios from the corresponding final segments using several statistics. These
statistics help quantify how “noisy” a sample is and help to decide which samples to exclude from an analysis, or to
select normal samples for a reference copy number profile.

For a single sample:

26 Chapter 2. Command line usage

CNVkit Documentation, Release 0.9.0

cnvkit.py metrics Sample.cnr -s Sample.cns

(Note that the order of arguments and options matters here, unlike the other commands: Everything after the -s flag
is treated as a segment dataset.)

Multiple samples can be processed together to produce a table:

cnvkit.py metrics S1.cnr S2.cnr -s S1.cns S2.cns
cnvkit.py metrics *.cnr -s *.cns

Several bin-level log2 ratio estimates for a single sample, such as the uncorrected on- and off-target coverages and
the final bin-level log2 ratios, can be compared to the same final segmentation (reusing the given segments for each
coverage dataset):

cnvkit.py metrics Sample.targetcoverage.cnn Sample.antitargetcoverage.cnn Sample.cnr -
→˓s Sample.cns

In each case, given the bin-level copy ratios (.cnr) and segments (.cns) for a sample, the log2 ratio value of each
segment is subtracted from each of the bins it covers, and several estimators of spread are calculated from the residual
values. The output table shows for each sample:

• Total number of segments (in the .cns file) – a large number of segments can indicate that the sample has either
many real CNAs, or noisy coverage and therefore many spurious segments.

• Uncorrected sample standard deviation – this measure is prone to being inflated by a few outliers, such as may
occur in regions of poor coverage or if the targets used with CNVkit analysis did not exactly match the capture.
(Also note that the log2 ratio data are not quite normally distributed.) However, if a sample’s standard deviation
is drastically higher than the other estimates shown by the metrics command, that helpfully indicates the
sample has some outlier bins.

• Median absolute deviation (MAD) – very robust against outliers, but less statistically efficient.

• Interquartile range (IQR) – another robust measure that is easy to understand.

• Tukey’s biweight midvariance – a robust and efficient measure of spread.

Note that many small segments will fit noisy data better, shrinking the residuals used to calculate the other estimates
of spread, even if many of the segments are spurious. One possible heuristic for judging the overall noisiness of each
sample in a table is to multiply the number of segments by the biweight midvariance – the value will tend to be higher
for unreliable samples. Check questionable samples for poor coverage (using e.g. bedtools, chanjo, IGV or Picard
CalculateHsMetrics).

Finally, visualizing a sample with CNVkit’s scatter command will often make it apparent whether a sample or the
copy ratios within a genomic region can be trusted.

segmetrics

Calculate summary statistics of the residual bin-level log2 ratio estimates from the segment means, similar to the
existing metrics command, but for each segment individually.

Results are output in the same format as the CNVkit segmentation file (.cns), with the stat names and calculated values
printed in additional columns.

cnvkit.py segmetrics Sample.cnr -s Sample.cns --iqr
cnvkit.py segmetrics -s Sample.cn{s,r} --ci --pi

Supported stats:

• Alternative estimators of segment mean, which ignore bin weights: --mean, -median, --mode.

2.3. Text and tabular reports 27

https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Median_absolute_deviation
https://en.wikipedia.org/wiki/Robust_measures_of_scale
https://en.wikipedia.org/wiki/Efficiency_%28statistics%29
https://en.wikipedia.org/wiki/Interquartile_range
http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/biwmidv.htm
http://bedtools.readthedocs.io/
http://www.chanjo.co/
http://www.broadinstitute.org/igv/
http://broadinstitute.github.io/picard/command-line-overview.html#CalculateHsMetrics
http://broadinstitute.github.io/picard/command-line-overview.html#CalculateHsMetrics

CNVkit Documentation, Release 0.9.0

• As in metrics: standard deviation (--std), median absolute deviation (--mad), inter-quartile range (--iqr),
Tukey’s biweight midvariance (--bivar)

• Additionally: mean squared error (--mse), standard error of the mean (-sem).

• Confidence interval of the segment mean (--ci), estimated by bootstrap (100 resamplings) of the bin-level
log2 ratio values within the segment. The upper and lower bounds are output as separate columns ci_lo and
ci_hi.

• Prediction interval (--pi), estimated by the range between the 2.5-97.5 percentiles of the segment’s bin-level
log2 ratios. The upper and lower bounds are output as columns pi_lo and pi_hi.

The --ci and --sem values obtained here can also be used in the call command for filtering segments.

Compatibility and other I/O

version

Print CNVkit’s version as a string on standard output:

cnvkit.py version

If you submit a bug report or feature request for CNVkit, please include the CNVkit version in your message so we
can help you more efficiently.

import-picard

Convert Picard CalculateHsMetrics per-target coverage files (.csv) to the CNVkit .cnn format:

cnvkit.py import-picard *.hsmetrics.targetcoverages.csv *.hsmetrics.
→˓antitargetcoverages.csv
cnvkit.py import-picard picard-hsmetrics/ -d cnvkit-from-picard/

You can use Picard tools to perform the bin read depth and GC calculations that CNVkit normally performs with the
coverage and reference commands, if need be.

Procedure:

1. Use the target and antitarget commands to generate the “targets.bed” and “antitargets.bed” files.

2. Convert those BED files to Picard’s “interval list” format by adding the BAM header to the top of the BED file
and rearranging the columns – see the Picard command BedToIntervalList.

3. Run Picard CalculateHsMetrics on each of your normal/control BAM files with the “targets” and “antitargets”
interval lists (separately), your reference genome, and the “PER_TARGET_COVERAGE” option.

4. Use import-picard to convert all of the PER_TARGET_COVERAGE files to CNVkit’s .cnn format.

5. Use reference to build a CNVkit reference from those .cnn files. It will retain the GC values Picard calculated;
you don’t need to provide the reference genome sequence again to get GC (but you if you do, it will also
calculate the RepeatMaster fraction values)

6. Use batch with the -r/--reference option to process the rest of your test samples.

28 Chapter 2. Command line usage

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/command-line-overview.html#BedToIntervalList
http://broadinstitute.github.io/picard/command-line-overview.html#CalculateHsMetrics

CNVkit Documentation, Release 0.9.0

import-seg

Convert a file in the SEG format (e.g. the output of standard CBS or the GenePattern server) into one or more CNVkit
.cns files.

The chromosomes in a SEG file may have been converted from chromosome names to integer IDs. Options in
import-seg can help recover the original names.

• To add a “chr” prefix, use “-p chr”.

• To convert chromosome indices 23, 24 and 25 to the names “X”, “Y” and “M” (a common convention), use “-c
human”.

• To use an arbitrary mapping of indices to chromosome names, use a comma-separated “key:value” string. For
example, the human convention would be: “-c 23:X,24:Y,25:M”.

import-theta

Convert the ”.results” output of THetA2 to one or more CNVkit .cns files representing subclones with integer absolute
copy number in each segment.

cnvkit.py import-theta Sample.cns Sample.BEST.results

See the page on tumor Tumor heterogeneity for more guidance on performing this analysis.

export

Convert copy number ratio tables (.cnr files) or segments (.cns) to another format.

bed

Segments can be exported to BED format to support a variety of other uses, such as viewing in a genome browser. By
default only regions with copy number different from the given ploidy (default 2) are output. (Notice what this means
for allosomes.) To output all segments, use the --show all option.

The BED format represents integer copy numbers in absolute scale, not log2 ratios. If the input .cns file contains a
“cn” column with integer copy number values, as generated by the call command, export bed will use those values.
Otherwise the log2 ratio value of each input segment is converted and rounded to an integer value, similar to the call
-m clonal method.

Estimate integer copy number of each segment
cnvkit.py call Sample.cns -y -o Sample.call.cns
Show estimated integer copy number of all regions
cnvkit.py export bed Sample.call.cns --show all -y -o Sample.bed

The same BED format can also specify CNV regions to the FreeBayes variant caller with FreeBayes’s --cnv-map
option:

Show only CNV regions
cnvkit.py export bed Sample.call.cns -o all-samples.cnv-map.bed

2.4. Compatibility and other I/O 29

https://software.broadinstitute.org/software/igv/SEG
http://compbio.cs.brown.edu/projects/theta/

CNVkit Documentation, Release 0.9.0

vcf

Convert segments, ideally already adjusted by the call command, to a VCF file. Copy ratios are converted to absolute
integers, as with BED export, and VCF records are created for the segments where the copy number is different from
the expected ploidy (e.g. 2 on autosomes, 1 on haploid sex chromosomes, depending on sample sex).

Chromosomal sex can be specified with the -x/--sample-sex option, or will be guessed automatically. If a male
reference is used, use -y/--male-reference to say so. Note that these are different: If a female sample is run
with a male reference, segments on chromosome X with log2-ratio +1 will be skipped, because that’s the expected
copy number, while an X-chromosome segment with log2-ratio 0 will be printed as a hemizygous loss.

cnvkit.py export vcf Sample.cns -y -g female -i "SampleID" -o Sample.cnv.vcf

cdt, jtv

A collection of probe-level copy ratio files (*.cnr) can be exported to Java TreeView via the standard CDT format
or a plain text table:

cnvkit.py export jtv *.cnr -o Samples-JTV.txt
cnvkit.py export cdt *.cnr -o Samples.cdt

seg

Similarly, the segmentation files for multiple samples (*.cns) can be exported to the standard SEG format to be
loaded in the Integrative Genomic Viewer (IGV):

cnvkit.py export seg *.cns -o Samples.seg

nexus-basic

The format nexus-basic can be loaded directly by the commercial program Biodiscovery Nexus Copy Number,
specifying the “basic” input format in that program. This allows viewing CNVkit data as if it were from array CGH.

This is a tabular format very similar to .cnr files, with the columns:

1. chromosome

2. start

3. end

4. log2

nexus-ogt

The format nexus-ogt can be loaded directly by the commercial program Biodiscovery Nexus Copy Number,
specifying the “Custom-OGT” input format in that program. This allows viewing CNVkit data as if it were from a
SNP array.

This is a tabular format similar to .cnr files, but with B-allele frequencies (BAFs) extracted from a corresponding VCF
file. The format’s columns are (with .cnr equivalents):

1. “Chromosome” (chromosome)

2. “Position” (start)

30 Chapter 2. Command line usage

CNVkit Documentation, Release 0.9.0

3. “Position” (end)

4. “Log R Ratio” (log2)

5. “B-Allele Frequency” (from VCF)

The positions of each heterozygous variant record in the given VCF are matched to bins in the given .cnr file, and the
variant allele frequencies are extracted and assigned to the matching bins.

• If a bin contains no variants, the BAF field is left blank

• If a bin contains multiple variants, the BAFs of those variants are “mirrored” to be all above .5 (e.g. BAF of .3
becomes .7), then the median is taken as the bin-wide BAF.

theta

THetA2 is a program for estimating normal-cell contamination and tumor subclone population fractions based on a
tumor sample’s copy number profile and, optionally, SNP allele frequencies. (See the page on tumor Tumor hetero-
geneity for more guidance.)

THetA2’s input file is a BED-like file, typically with the extension .interval_count, listing the read counts
within each copy-number segment in a pair of tumor and normal samples. CNVkit can generate this file given the
CNVkit-inferred tumor segmentation (.cns), bypassing the initial step of THetA2, CreateExomeInput, which counts
the reads in each sample’s BAM file.

The normal-sample read counts in this file are used for weighting each segment in THetA2’s calculations. We recom-
mend providing these to export theta via the CNVkit pooled or paired reference file (.cnn) you created for your
panel:

From an existing CNVkit reference
cnvkit.py export theta Sample_Tumor.cns reference.cnn -o Sample.theta2.interval_count

The THetA2 normal read counts can also be derived from the normal sample’s bin log2 ratios, if for some reason this
is all you have:

From a paired normal sample
cnvkit.py export theta Sample_Tumor.cns Sample_Normal.cnr -o Sample.theta2.interval_
→˓count

If neither file is given, the THetA2 normal read counts will be calculated from the segment weight values in the given
.cns file, or the number of probes if the “weight” column is missing, or as a last resort, the segment sizes if the “probes”
column is also missing:

From segment weights and/or probe counts
cnvkit.py export theta Sample_Tumor.cns -o Sample.theta2.interval_count

THetA2 also can take the tumor and normal samples’ SNP allele frequencies as input to improve its estimates. THetA2
uses another custom format for these values, and provides another script for creating these files from VCF that we’d
again prefer to bypass. CNVkit’s export theta command produces these two additional files when given a VCF
file of paired tumor-normal SNV calls with the -v/--vcf option:

cnvkit.py export theta Sample_Tumor.cns reference.cnn -v Sample_Paired.vcf

This produces three output files; -o will be used for the read count file, while the SNV allele count files will be
named according to the .cns file, e.g. Sample_Tumor.tumor.snp_formatted.txt and Sample_Tumor.
normal.snp_formatted.txt.

2.4. Compatibility and other I/O 31

http://compbio.cs.brown.edu/projects/theta/

CNVkit Documentation, Release 0.9.0

Additional scripts

cnn_annotate.py Update gene names (the ‘gene’ column) in CNVkit .cnn/.cnr files, using gene annotations from
another UCSC RefFlat, BED, or GFF file (e.g. refFlat.txt). This may be useful if you notice at the end of an
analysis that vendor-annotated targets are not the desired gene names, and want to change the labeling without
repeating the analysis with an updated target BED file.

cnn_updater.py Update .cnn, .cnr and .cns files previously generated by earlier versions of CNVkit to add a “depth”
column used in CNVkit version 0.8.0 and later. The script reads each input file, calculates absolute-scale depth
from the file’s existing “log2” column value in each row, and creates a corresponding output file with a modified
name – the input files are not modified in-place.

Running this script is not necesssary for new analyses, but may help ease the transition for analyses that have
already begun.

guess_baits.py Use the read depths in one or more given BAM files to infer which regions were targeted in a hybrid
capture or targeted amplicon capture sequencing protocol. This script can be used in case the original BED file
of targeted intervals is unavailable. (However, CNVkit will give much better results if the true targeted intervals
can be provided.) It works in 2 modes, guided and unguided:

• Guided: Given candidate targets, such as all known exons in the reference genome, test the mean coverage
depth in each candidate target and drop those that did not receive sufficient coverage, presumed to be those
exons or genes that were not targeted by the sequencing library.

guess_baits.py Sample1.bam Sample2.bam -t ucsc-exons.bed -o baits.bed

• Unguided: Scan every base in the sample BAM(s), inferring likely boundaries for enriched regions. (This
is usually much slower then the guided approach.)

guess_baits.py -g access.hg19.bed Sample1.bam Sample2.bam -o baits.bed

reference2targets.py Extract target and antitarget BED files from a CNVkit reference file. While the batch command
does this step automatically when an existing reference is provided, you may find this standalone script useful
to recover the target and antitarget BED files that match the reference if those BED files are missing or you’re
not sure which ones are correct.

Alternatively, once you have a stable CNVkit reference for your platform, you can use this script to drop the
“bad” bins from your target and antitarget BED files (and subsequently built references) to avoid unnecessarily
calculating coverage in those bins during future runs.

refFlat2bed.py (Deprecated in favor of skg_convert.py)

Generate a BED file of the genes or exons in the reference genome given in UCSC refFlat.txt format. (Download
the input file from UCSC Genome Bioinformatics).

skg_convert.py Convert between any of the tabular data formats supported by skgenome.tabio, including BED and
UCSC RefFlat.

32 Chapter 2. Command line usage

http://hgdownload.soe.ucsc.edu/downloads.html

CHAPTER 3

FAQ & How To

Calling copy number gains and losses

The relationship between the observed copy ratio and the true underlying copy number depends on tumor cell fraction
(purity), genome ploidy (which may be heterogeneous in a tissue sample), and the size of the subclonal population
containing the CNA. Because of these ambiguities, CNVkit initially reports only the estimated log2 copy ratio, and
supports several approaches to deriving absolute integer copy number or evaluating copy number gains and losses.

In a diploid genome, a single-copy gain in a perfectly pure, homogeneous sample has a copy ratio of 3/2. In log2 scale,
this is log2(3/2) = 0.585, and a single-copy loss is log2(1/2) = -1.0.

In the diagram plot, for the sake of providing a clean visualization of confidently called CNAs, the default threshold
to label genes is 0.5. This threshold will tend to display gene amplifications, fully clonal single-copy gains in fairly
pure samples, most single-copy losses, and total (homozygous) deletions.

When using the gainloss command, choose a threshold to suit your needs depending on your knowledge of the sample’s
purity, heterogeneity, and likely features of interest. As a starting point, try 0.1 or 0.2 if you are going to do your own
filtering downstream, or 0.3 if not.

To evaluate the level of support for each segment, use the segmetrics command. In particular, the –ci option estimates
the confidence interval of the segment mean: the difference between the upper and lower limits suggests the reliability
of the estimate, and the value of the upper or lower limit suggests the minimum loss or gain value, respectively,
supported by the bin-level log2 ratios in that segment.

The call command implements two simple methods to convert the log2 ratios in a segmented .cns file to absolute
integer copy number values. Given known or estimated tumor purity and ploidy values, this command can also adjust
for tumor heterogeneity.

A .cns file can be converted to BED or VCF format using the export command. These output styles display the inferred
absolute integer copy number value of each segment. To first adjust for known purity and ploidy of the sample, or
apply log2 thresholds for integer calls, use call before exporting.

33

CNVkit Documentation, Release 0.9.0

Allele frequencies and copy number

What is BAF?

In this context, the “B” allele is the non-reference allele observed in a germline heterozygous SNP, i.e. in the nor-
mal/control sample. Since the tumor cells’ DNA originally derived from normal cells’ DNA, most of these SNPs will
also be present in the tumor sample. But due to allele-specific copy number alterations, loss of heterozygosity or allelic
imbalance, the allelic frequency of these SNPs may be different in the tumor, and that’s evidence that one (or both) of
the germline copies was gained or lost during tumor evolution.

The shift in b-allele frequency is calculated relative to the expected heterozygous frequency 0.5, and minor allele
frequencies are “mirrored” above and below 0.5 so that it does not matter which allele is considered the reference –
the relative shift from 0.5 will be the same either way. (Multiple alternate alleles are not considered here.)

How does it work?

Estimation from a SNP b-allele frequencies works by comparing the shift in allele frequency of heterozygous, germline
SNPs in the tumor sample from the expected ~50% – e.g. a 3-copy segment in a diploid genome would have log2 ratio
of +0.58 and heterozygous SNPs would have an average BAF of 67% or 33% if the tumor sample is fully clonal, and
closer to log2 0.0 and BAF 0.5 if there is normal-cell contamination and/or tumor heterogeneity.

Typically you would use a properly formatted VCF from joint tumor-normal SNV calling, e.g. the output of MuTect,
VarDict, or FreeBayes, having already flagged somatic mutations so they can be skipped in this analysis. If you
have no matched normal sample for a given tumor, you can use 1000 Genomes common SNP sites to extract the
likely germline SNVs from a tumor-only VCF, and use just those sites with THetA2 (or another tool like PyClone or
BubbleTree).

Use SNP b-allele frequencies from a VCF in these commands:

• call

• scatter

• export nexus-ogt and theta

Tumor analysis

CNVkit has been used most extensively on solid tumor samples sequenced with a target panel or whole-exome se-
quencing protocol. Several options and approaches are available to support this use case:

• If you have unpaired tumor samples, or no normal samples sequenced on the same platform, see the reference
command for strategies.

• Use --drop-low-coverage to ignore bins with log2 normalized coverage values below -15. Virtually
all tumor samples, even cancer cell lines, are not completely homogeneous. Even in regions of homozygous
deletion in the largest tumor-cell clonal population, some sequencing reads will be obtained from contaminating
normal cells without the deletion. Therefore, extremely low log2 copy ratio values do not indicate homozygous
deletions but failed sequencing or mapping in all cells regardless of copy number status at that site, which are
not informative for copy number. This option in the batch command applies to segmentation; the option is also
available in the segment, metrics, segmetrics, gainloss and Tumor heterogeneity commands.

– Why -15? The null log2 value substituted for bins with zero coverage is -20 (about 1 millionth the average
bin’s coverage), and the maximum positive shift that can be introduced by normalizing to the reference is
5 (for bins with 1/32 the average coverage; bins below this are masked out by the reference). In a .cnr file,

34 Chapter 3. FAQ & How To

CNVkit Documentation, Release 0.9.0

any bins with log2 value below -15 are probably based on dummy values corresponding to zero-coverage
(perhaps unmappable) bins, and not real observations.

• The batch command does not directly output integer copy number calls (see Tumor heterogeneity). Instead,
use the --ploidy and --purity options in call to calculate copy number for each sample individually
using known or estimated tumor-cell fractions. Also consider using --center median in highly aneuploid
samples to shift the log2 value of true neutral regions closer to zero, as it may be slightly off initially.

• If SNV calls are available in VCF format, use the -v/--vcf option in the call and scatter commands to
calculate or plot b-allele frequencies alongside each segment’s total copy number or log2 ratio. These values
reveal allelic imbalance and loss of heterozygosity (LOH), supporting and extending the inferred CNVs.

Tumor heterogeneity

DNA samples extracted from solid tumors are rarely completely pure. Stromal or other normal cells and distinct
subclonal tumor-cell populations are typically present in a sample, and can confound attempts to fit segmented log2
ratio values to absolute integer copy numbers.

CNVkit provides several points of integration with existing tools and methods for dealing with tumor heterogeneity
and normal-cell contamination.

Estimating tumor purity and normal contamination

A rough estimate of tumor purity can usually be obtained using one or more of these approaches:

1. A pathologist can visually estimate the purity of an sample taken from a solid tumor by examination under a
microscope, counting stromal and neoplastic cells.

2. If the tumor is belived to be driven by a somatic point mutation, e.g. BRAF V600E in melanoma, then that mu-
tation is assumed to be fully clonal and its allele frequency indicates the tumor purity. This can be complicated
by copy number alterations at the same site and whether the point mutation is homozygous or heterozygous, but
the frequencies of other somatic mutations in the same sample may resolve this satisfactorily.

3. Larger-scale, hemizygous losses that cover germline heterozygous SNPs shift the allele frequencies of the same
SNPs as they are present in the tumor sample. In a 50% pure tumor sample, for example, these SNP b-allele
frequencies would shift from 50% to 67% or 33%, assuming a diploid sample (i.e. 1 of 2 copies from the normal
sample and 0 or 1 of 1 copy from the tumor, depending on whether the variant allele was lost or retained). The
general calculation is a bit more complicated than in #1 or #2, and can be done similarly for copy number gains
and homozygous deletions.

4. The log2 ratio values of CNAs in a tumor sample correspond to integer copy numbers in tumor cells, and in
aggregate these log2 values will cluster around values that indicate subclone populations, each with a given
ploidy and clonality. For example, a single-copy loss in a 50% pure tumor sample will have 3/4 the coverage of
a neutral site (2/2 normal copies, 1/2 tumor copies), for a log2 value of log2(.75) = -0.415. This calculation can
also be generalized to other copy number states.

Software implementations of the latter three approaches can be used directly on DNA sequencing data.

Inferring tumor purity and subclonal population fractions from sequencing

While inferring the tumor population structure is currently out of the scope of CNVkit, this work can be done using
other third-party programs such as THetA2, PyClone, or BubbleTree. Each of these programs can be used to estimate
tumor cell content and infer integer copy number of tumor subclones in a sample.

3.4. Tumor heterogeneity 35

http://compbio.cs.brown.edu/projects/theta/
http://compbio.bccrc.ca/software/pyclone/
https://www.bioconductor.org/packages/release/bioc/html/BubbleTree.html

CNVkit Documentation, Release 0.9.0

Using CNVkit with THetA2

CNVkit provides wrappers for exporting .cns segments to THetA2’s input format and importing THetA2’s result file
as CNVkit’s segmented .cns files. See the commands theta and import-theta for usage instructions.

After running the CNVkit Copy number calling pipeline on a sample, and calling SNVs jointly on the tumor and
normal samples, generate the THetA2 input files from the .cns and .vcf files:

cnvkit.py export theta Sample_T.cns reference.cnn -v Sample_Paired.vcf

This produces three output files: Sample_T.interval_count, Sample_T.tumor.snp_formatted.txt,
and Sample_T.normal.snp_formatted.txt.

Then, run THetA2 (assuming the program was unpacked at /path/to/theta2/):

Generates Sample_T.BEST.results:
/path/to/theta2/bin/RunTHetA Sample_T.interval_count \

--TUMOR_FILE Sample_T.tumor.snp_formatted.txt \
--NORMAL_FILE Sample_T.normal.snp_formatted.txt \
--BAF --NUM_PROCESSES `nproc` --FORCE

Finally, import THetA2’s results back into CNVkit’s .cns format, matching the original segmentation (.cns) to the
THetA2-inferred absolute copy number values.:

cnvkit.py import-theta Sample_T.cns Sample_T.BEST.results

THetA2 adjusts the segment log2 values to the inferred cellularity of each detected subclone; this can result in one
or two .cns files representing subclones if more than one clonal tumor cell population was detected. THetA2 also
performs some significance testing of each segment representing a CNA, so there may be fewer segments derived
from THetA2 than were originally found by CNVkit.

The segment values are still log2-transformed in the resulting .cns files, for convenience in plotting etc. with CNVkit.
These files are also easily converted to other formats using the export command.

Adjusting copy ratios and segments for normal cell contamination

CNVkit’s call command uses an estimate of tumor fraction (from any source) to directly rescale segment log2 ratio
values, and SNV b-allele frequencies if present, to the value that would be seen a completely pure, uncontaminated
sample. Example with tumor purity of 60% and a male reference:

cnvkit.py call -m none Sample.cns --purity 0.6 -y -o Sample.call.cns

The call command can also convert the segmented log2 ratio estimates to absolute integer copy numbers. If the tumor
cell fraction is known confidently, use the -m clonal method to round the log2 ratios to the nearest integer copy
number. Alternatively, the -m threshold method to applies hard thresholds. Note that rescaling for purity is
optional; either way, integer copy numbers are emitted unless the -m none option is used to skip it.

cnvkit.py call -m clonal Sample.cns -y --purity 0.65 -o Sample.call.cns
Or, if already rescaled
cnvkit.py call -m clonal Sample.call.cns -y -o Sample.call.cns
With CNVkit's default cutoffs
cnvkit.py call -m threshold Sample.cns -y -o Sample.call.cns
Or, using a custom set of cutoffs
cnvkit.py call -t=-1.1,-0.4,0.3,0.7 Sample.cns -y -o Sample.call.cns

36 Chapter 3. FAQ & How To

CNVkit Documentation, Release 0.9.0

Export integer copy numbers as BED or VCF

The export bed and vcf commands emit integer copy number calls in the standard BED or VCF formats:

cnvkit.py export bed Sample.call.cns -y -o Sample.bed
cnvkit.py export vcf Sample.call.cns -y -o Sample.vcf

If the .call.cns files were generated by the call command, the integer copy numbers calculated in that step will be
exported as well.

Germline analysis

CNVkit can be used with exome sequencing of constitutional (non-tumor) samples, for example to detect germline
copy number alterations associated with heritable conditions. However, note that CNVkit is less accurate in detecting
CNVs smaller than 1 Mbp, typically only detecting variants that span multiple exons or captured regions. When used
on exome or target panel datasets, CNVkit will not detect the small CNVs that are more common in populations.

To use CNVkit to detect medium-to-large CNVs or unbalanced SVs in constitutional samples:

• The call command can be used directly without specifying the --purity and --ploidy values, as the
defaults will be correct for mammalian cells. (For non-diploid species, use the correct --ploidy, of course.)
The default --method threshold assigns integer copy number similarly to --method clonal, but
with smaller thresholds for calling single-copy changes. The default thresholds allow for mosaicism in CNVs,
which have smaller log2 value than a single-copy CNV would indicate. (They’re more common than often
thought.)

• The --filter option in call can be used to reduce the number of false-positive segments returned. To use the
ci (recommended) or sem filters, first run each sample’s segmented .cns file through segmetrics with the --ci
option, which adds upper and lower confidence limits to the .cns output that call --filter ci can then
use.

• The --drop-low-coverage option (see Tumor analysis) should not be used; it will typically remove
germline deep deletions altogether, which is not desirable.

• For using CNVkit with whole-genome sequencing datasets, see Whole-genome sequencing and targeted ampli-
con capture.

Whole-genome sequencing and targeted amplicon capture

CNVkit is primarily designed for use on hybrid capture sequencing data, where off-target reads are present and can
be used improve copy number estimates. However, CNVkit can also be used on whole-genome sequencing (WGS)
and targeted amplicon sequencing (TAS) datasets by using alternative command-line options.

The batch command supports these workflows through the -m/--method option.

Whole-Genome Sequencing (WGS)

CNVkit treats WGS data as a capture of all of the genome’s sequencing-accessible regions, with no off-target regions.

The batch --method wgs option uses the given reference genome’s sequencing-accessible regions (“access”
BED) as the “targets” – these will be calculated on the fly if not provided. No “antitarget” regions are used. Since the
input does not contain useful per-target gene labels, a gene annotation database is required and used to label genes in
the outputs:

3.5. Germline analysis 37

CNVkit Documentation, Release 0.9.0

cnvkit.py batch -m wgs -g data/access-5kb-mappable.hg19.bed --annotate refFlat.txt *.
→˓bam

Equivalently:

cnvkit.py target data/access-5kb-mappable.hg19.bed --split --short-names --annotate
→˓refFlat.txt -o targets.bed
Create a blank file to substitute for antitargets
touch MT
For each sample
cnvkit.py coverage Sample.bam targets.bed -p 0 -o Sample.targetcoverage.cnn
cnvkit.py reference *.targetcoverage.cnn --no-edge -o ref-wgs.cnn
cnvkit.py fix Sample.targetcoverage.cnn MT ref-wgs.cnn --no-edge

To speed up and/or improve the accuracy of WGS analyses, try any or all of the following:

• Instead of analyzing the whole genome, use the “target” BED file to limit the analysis to just the genic regions.
You can get such a BED file from the [UCSC Genome Browser](https://genome.ucsc.edu/cgi-bin/hgTables), for
example.

• Increase the “target” average bin size, e.g. to at least 1000 bases for 30x coverage, or proportionally more for
lower-coverage sequencing.

• Specify a smaller p-value threshold (segment -t). For the CBS method, 1e-6 may work well. Or, try the
haar segmentation method.

• Use the -p/--processes option in the batch, coverage and segment commands to ensure all available CPUs
are used.

• Ensure you are using the most recent version of CNVkit. Each release includes some performance improve-
ments.

• Turn off the “edge” bias correction in the reference and fix commands (–no-edge).

The batch -m wgs option does all of these except the first automatically.

Targeted Amplicon Sequencing (TAS)

When amplicon sequencing is used as a targeted capture method, no off-target reads are sequenced. While this limits
the copy number information available in the sequencing data versus hybrid capture, CNVkit can analyze TAS data
using only on-target coverages and excluding all off-target regions from the analysis.

The batch -m amplicon option uses the given targets to infer coverage, ignoring off-target regions:

cnvkit.py batch -m amplicon -t targets.bed *.bam

Equivalently:

cnvkit.py target targets.bed --split -o targets.split.bed
Create a blank file to substitute for antitargets
touch MT
For each sample
cnvkit.py coverage Sample.bam targets.split.bed -p 0 -o Sample.targetcoverage.cnn
cnvkit.py reference *.targetcoverage.cnn --no-edge -o ref-tas.cnn
cnvkit.py fix Sample.targetcoverage.cnn MT ref-tas.cnn --no-edge

This approach does not collect any copy number information between targeted regions, so it should only be used if you
have in fact prepared your samples with a targeted amplicon sequencing protocol. It also does not attempt to further
normalize each amplicon at the gene level, though this may be addressed in a future version of CNVkit.

38 Chapter 3. FAQ & How To

https://genome.ucsc.edu/cgi-bin/hgTables

CNVkit Documentation, Release 0.9.0

Note: Do not mark duplicates in the BAM files for samples sequenced by this method.

Picard MarkDuplicates, samtools rmdup, et al. are designed to flag possible PCR duplicates (originally for WGS
datasets, but also useful for hybrid capture). Variant callers like GATK and CNVkit will ignore those reads in their
internal calculations, considering these reads to be non-independent measurements. (This SeqAnswers thread has
details and background).

In targeted amplicon sequencing, all of the amplified reads are in fact PCR duplicates by design. By marking and thus
omitting these reads, the remaining coverage will be low, as if no amplification were performed.

Chromosomal sex

CNVkit attempts to handle chromosomal sex correctly throughout the analysis pipelines. Several commands automat-
ically infer a given sample’s chromosomal sex from the relative copy number of the autosomes and chromosomes X
and Y; the status log messages will indicate when this is happening. In most cases the inference can be skipped or
overridden by using the -x/--sample-sex option.

The sex command runs and report’s CNVkit’s inference for one or more given samples, and can be used on .cnn, .cnr
or .cns files at any stage of processing.

Reference sex

See reference

If you want copy number calls to be relative to a male reference with a single X chromosome but dipoid autosomes,
use the -y option everywhere. Otherwise, X and all autosomes will be considered normally diploid. Chromosome Y
will be considered haploid in either case.

Chromosomal sex in calling absolute copy number

See call

Plots and sex chromosomes

diagram adjusts the sex chromosomes for sample and reference sex so that gains and losses on chromosomes X and Y
are highlighted and labeled appropriately.

scatter and heatmap do not adjust the sex chromosomes for sample or reference sex.

FAQ

Why does chromosome X/Y show a gain/loss?

The copy number status of sex chromosomes may be surprising if you are unsure about the sex of the samples and
reference used:

• Female samples normalized to a male reference will show a doubling of chromosome X (log2 value about +1.0)
and complete loss of chromosome Y (log2 value below -3.0, usually far below).

3.7. Chromosomal sex 39

http://seqanswers.com/forums/showthread.php?t=6854

CNVkit Documentation, Release 0.9.0

• Male samples normalized to a female reference will show a single-copy loss of chromosome X (log2 value about
-1.0). The chromosome Y value should be near 0.0, but the log2 values may be noisier and less reliable than on
autosomes.

In the output of the diagram, call, and export commands, the X or Y copy number may be wrong if the sex of the
reference (-y/--male-reference) or sample (-x) was not specified correctly. If sample sex was not specified on
the command line, check the command’s logged status messages to see if the sample’s sex was guessed incorrectly.

After you’ve verified the above, the CNV might be real.

CNVkit is not detecting my sample’s sex correctly. What can I do?

In lower-quality samples, particularly tumor samples analyzed without a robust reference (see Tumor analysis), there
may be many bins with no coverage which bias the segment means. Try repeating the segment command with the
--drop-low-coverage option if you did not do so originally.

See also: https://www.biostars.org/p/210080/

Bias corrections

The sequencing coverage depth obtained at different genomic regions is variable, particularly for targeted capture.
Much of this variability is due to known biochemical effects related to library prep, target capture and sequencing.
Normalizing the read depth in each on– and off-target bin to the expected read depths derived from a reference of
normal samples removes much of the biases attributable to GC content, target density. However, these biases also vary
between samples, and must still be corrected even when a normal reference is available.

To correct each of these known effects, CNVkit calculates the relationship between observed bin-level read depths and
the values of some known biasing factor, such as GC content. This relationship is fitted using a simple rolling median,
then subtracted from the original read depths in a sample to yield corrected estimates.

In the case of many similarly sized target regions, there is the potential for the bias value to be identical for many
targets, including some spatially near each other. To ensure that the calculated biases are independent of genomic
position, the probes are randomly shuffled before being sorted by bias value.

The GC content and repeat-masked fraction of each bin are calculated during generation of the reference from the
user-supplied genome. The bias corrections are then performed in the reference and fix commands.

GC content

Genomic regions with extreme GC content, the fraction of sequence composed of guanine or cytosine bases, are
less amenable to hybridization, amplification and sequencing, and will generally appear to have lower coverage than
regions of average GC content.

To correct this bias in each sample, CNVkit calculates the association between each bin’s GC content (stored in the
reference) and observed read depth, fits a trendline through the bin read depths ordered by GC value, and subtracts
this trend from the original read depths.

Sequence repeats

Repetitive elements in the genome can be masked out with RepeatMasker – and the genome sequences provided by the
UCSC Genome Bioinformatics Site have this masking applied already. The fraction of each genomic bin masked out
for repetitiveness indicates both low mappability and the susceptibility to Cot-1 blocking, both of which can reduce
the bin’s observed coverage.

40 Chapter 3. FAQ & How To

https://www.biostars.org/p/210080/
http://www.repeatmasker.org/
http://genome.ucsc.edu/

CNVkit Documentation, Release 0.9.0

CNVkit removes the association between repeat-masked fraction and bin read depths for each sample similarly to the
GC correction.

Targeting density

In hybridization capture, two biases occur near the edge of each baited region:

• Within the baited region, read depth is lower at the “shoulders” where sequence fragments are not completely
captured.

• Just outside the baited region, in the “flanks”, read depth is elevated to nearly that of the adjacent baited sites
due to the same effect. If two targets are very close together, the sequence fragments captured for one target can
increase the read depth in the adjacent target.

CNVkit roughly estimates the potential for these two biases based on the size and position of each baited region and
its immediate neighbors. The biases are modeled together as a linear decrease in read depth from inside the target
region to the same distance outside. These biases occur within a distance of the interval edges equal to the sequence
fragment size (also called the insert size for paired-end sequencing reads). Density biases are calculated from the start
and end positions of a bin and its neighbors within a fixed window around the target’s genomic coordinates equal to
the sequence fragment size.

Shoulder effect: Letting i be the average insert size and t be the target interval size, the negative bias at interval
shoulders is calculated as 𝑖/4𝑡 at each side of the interval, or 𝑖/2𝑡 for the whole interval. When the interval is smaller
than the sequence fragment size, the portion of the fragment extending beyond the opposite edge of the interval should
not be counted in this calculation. Thus, if 𝑡 < 𝑖, the negative bias value must be increased (absolute value reduced)
by (𝑖−𝑡)2

2𝑖𝑡 .

Flank effect: Additionally letting g be the size of the gap between consecutive intervals, the positive bias that occurs
when the gap is smaller than the insert size (𝑔 < 𝑖) is (𝑖−𝑔)2

4𝑖𝑡 . If the target interval and gap together are smaller than the
insert size, the reads flanking the neighboring interval may extend beyond the target, and this flanking portion beyond
the target should not be counted. Thus, if 𝑡+ 𝑔 < 𝑖, the positive value must be reduced by (𝑖−𝑔−𝑡)2

4𝑖𝑡 . If a target has no
close neighbors (𝑔 > 𝑖, the common case), the “flank” bias value is 0.

These values are combined into a single value by subtracting the estimated shoulder biases from the flank biases. The
result is a negative number between -1 and 0, or 0 for a target with immediately adjacent targets on both sides. Thus,
subdividing a large targeted interval into a consecutive series of smaller targets does not change the net “density”
calculation value.

The association between targeting density and bin read depths is then fitted and subtracted, as with GC and Repeat-
Masker.

CNVkit applies the density bias correction to only the on-target bins; the negative “shoulder” bias is not expected to
occur in off-target regions because those regions are not specifically captured by baits, and the positive “flank” bias
from neighboring targets is avoided by allocating off-target bins around existing targets with a margin of twice the
expected insert size.

File formats

We’ve tried to use standard file formats where possible in CNVkit. However, in a few cases we have needed to extend
the standard BED format to accommodate additional information.

All of the non-standard file formats used by CNVkit are tab-separated plain text and can be loaded in a spreadsheet
program, R or other statistical analysis software for manual analysis, if desired.

3.9. File formats 41

CNVkit Documentation, Release 0.9.0

BED and GATK/Picard Interval List

• UCSC Genome Browser’s BED definition and FAQ

• GATK’s Interval List description and FAQ

Note that BED genomic coordinates are 0-indexed, like C or Python code – for example, the first nucleotide of a
1000-basepair sequence has position 0, the last nucleotide has position 999, and the entire region is indicated by the
range 0-1000.

Interval list coordinates are 1-indexed, like R or Matlab code. In the same example, the first nucleotide of a 1000-
basepair sequence has position 1, the last nucleotide has position 1000, and the entire region is indicated by the range
1-1000.

VCF

See the VCF specifications.

CNVkit currently uses VCF files in two ways:

• To extract single-nucleotide variant (SNV) allele frequencies, which can be plotted in the scatter command,
used to assign allele-specific copy number in the call command, or exported along with bin-level copy ratios to
the “nexus-ogt” format.

• To export CNVs, describing/encoding each CNV segment as a structural variant (SV).

For the former – investigating allelic imbalance and loss of heterozygosity (LOH) – it’s most useful to perform paired
calling on matched tumor/normal samples. You can use a separate SNV caller such as FreeBayes, VarDict, or MuTect
to do this. For best results, ensure that:

• Both the tumor and normal samples are present in the same VCF file.

• Include both germline and somatic variants (if any) in the VCF file. (For MuTect, this means keeping the
“REJECT” records.) Mark somatic variants with the “SOMATIC” flag in the INFO column.

• Add a PEDIGREE tag to the VCF header declaring the tumor sample(s) as “Derived” and the normal as “Orig-
inal”. Without this tag, you’ll need to tell CNVkit which sample is which using the -i and -n options in each
command.

An example VCF constructed from the 1000 Genomes samples NA12878 and NA12882 is included in CNVkit’s test
suite.

Target and antitarget bin-level coverages (.cnn)

CNVkit saves its information in a tabular format similar to BED, but with additional columns. Each row in the file
indicates an on-target or off-target (a.k.a. “antitarget”) bin. Genomic coordinates are 0-indexed, like BED. Column
names are shown as the first line of the file.

In the output of the coverage command, the columns are:

• Chromosome or reference sequence name (chromosome)

• Start position (start)

• End position (end)

• Gene name (gene)

• Log2 mean coverage depth (log2)

• Absolute-scale mean coverage depth (depth)

42 Chapter 3. FAQ & How To

http://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://www.broadinstitute.org/gatk/guide/article?id=1204
https://www.broadinstitute.org/gatk/guide/article?id=1319
https://github.com/samtools/hts-specs
https://github.com/etal/cnvkit/blob/master/test/formats/na12878_na12882_mix.vcf?raw=true

CNVkit Documentation, Release 0.9.0

Essentially the same tabular file format is used for coverages (.cnn), ratios (.cnr) and segments (.cns) emitted by
CNVkit.

Copy number reference profile (.cnn)

In addition to the columns present in the “target” and “antitarget” .cnn files, the reference .cnn file has the columns:

• GC content of the sequence region (gc)

• RepeatMasker-masked proportion of the sequence region (rmask)

• Statistical spread or dispersion (spread)

The log2 coverage depth is the robust average of coverage depths, excluding extreme outliers, observed at the corre-
sponding bin in each the sample .cnn files used to construct the reference. The spread is a similarly robust estimate of
the standard deviation of normalized log2 coverages in the bin. The depth column is the robust average of absolute-
scale coverage depths from the input .cnn files, but without any bias corrections.

To manually review potentially problematic targets in the built reference, you can sort the file by the spread column;
bins with higher values are the noisy ones.

It is important to keep the copy number reference file consistent for the duration of a project, reusing the same reference
for bias correction of all tumor samples in a cohort. If your library preparation protocol changes, it’s usually best to
build a new reference file and use the new file to analyze the samples prepared under the new protocol.

Bin-level log2 ratios (.cnr)

In addition to the chromosome, start, end, gene, log2 and depth columns present in .cnn files, the .cnr file
includes each bin’s proportional weight or reliability (weight).

The weight value is derived from several sources:

• The size of the bin relative to the average bin size (for targets or antitargets, separately)

• For a paired or pooled reference, the deviation of the reference log2 value from neutral coverage (i.e. distance
from 0.0)

• For a pooled reference, the inverse of the variance (i.e. square of spread in the reference) of normalized log2
coverage values seen among all normal samples at that bin.

This calculated value is used to weight the bin log2 ratio values during segmentation. Also, when a genomic region is
plotted with CNVkit’s “scatter” command, the size of the plotted datapoints is proportional to each bin’s weight – a
relatively small point indicates a less reliable bin.

Segmented log2 ratios (.cns)

In addition to the chromosome, start, end, gene, log2, depth and weight columns present in .cnr files, the
.cns file format has the additional column probes, indicating the number of bins covered by the segment.

The gene column concatenates the gene names of all the bins that the segment covers. The weight column sums the
bin-level weights, and the depth and log2 is the weighted mean of the input bin-level values corresponding to the
segment.

3.9. File formats 43

CNVkit Documentation, Release 0.9.0

44 Chapter 3. FAQ & How To

CHAPTER 4

Python API

cnvlib package

Module cnvlib contents

The one function exposed at the top level, read, loads a file in CNVkit’s BED-like tabular format and returns a Copy-
NumArray instance. For your own scripting, you can usually accomplish what you need using just the CopyNumArray
and GenomicArray methods available on this returned object (see Core classes).

To load other file formats, see Tabular file I/O (tabio). To run functions equivalent to CNVkit commands within
Python, see Interface to CNVkit sub-commands.

Core classes

The core objects used throughout CNVkit. The base class is GenomicArray from scikit-genome package. All of these
classes wrap a pandas DataFrame instance, which is accessible through the .data attribute and can be used for any
manipulations that aren’t already provided by methods in the wrapper class.

cnary

CNVkit’s core data structure, a copy number array.

class cnvlib.cnary.CopyNumArray(data_table, meta_dict=None)
Bases: skgenome.gary.GenomicArray

An array of genomic intervals, treated like aCGH probes.

Required columns: chromosome, start, end, gene, log2

Optional columns: gc, rmask, spread, weight, probes

by_gene(ignore=(‘-‘, ‘.’, ‘CGH’))
Iterate over probes grouped by gene name.

45

http://pandas.pydata.org/

CNVkit Documentation, Release 0.9.0

Group each series of intergenic bins as an “Antitarget” gene; any “Antitarget” bins within a gene are
grouped with that gene.

Bins’ gene names are split on commas to accommodate overlapping genes and bins that cover multiple
genes.

Parameters ignore (list or tuple of str) – Gene names to treat as “Antitarget”
bins instead of real genes, grouping these bins with the surrounding gene or intergenic region.
These bins will still retain their name in the output.

Yields tuple – Pairs of: (gene name, CNA of rows with same name)

center_all(estimator=<unbound method Series.median>, by_chrom=True, skip_low=False, ver-
bose=False)

Re-center log2 values to the autosomes’ average (in-place).

Parameters

• estimator (str or callable) – Function to estimate central tendency. If a string,
must be one of ‘mean’, ‘median’, ‘mode’, ‘biweight’ (for biweight location). Median by
default.

• skip_low (bool) – Whether to drop very-low-coverage bins (via drop_low_coverage)
before estimating the center value.

• by_chrom (bool) – If True, first apply estimator to each chromosome separately, then
apply estimator to the per-chromosome values, to reduce the impact of uneven targeting
or extreme aneuploidy. Otherwise, apply estimator to all log2 values directly.

compare_sex_chromosomes(male_reference=False, skip_low=False)
Compare coverage ratios of sex chromosomes versus autosomes.

Perform 4 Mood’s median tests of the log2 coverages on chromosomes X and Y, separately shifting for
assumed male and female chromosomal sex. Compare the chi-squared values obtained to infer whether
the male or female assumption fits the data better.

Parameters

• male_reference (bool) – Whether a male reference copy number profile was used
to normalize the data. If so, a male sample should have log2 values of 0 on X and Y, and
female +1 on X, deep negative (below -3) on Y. Otherwise, a male sample should have
log2 values of -1 on X and 0 on Y, and female 0 on X, deep negative (below -3) on Y.

• skip_low (bool) – If True, drop very-low-coverage bins (via drop_low_coverage) be-
fore comparing log2 coverage ratios. Included for completeness, but shouldn’t affect the
result much since the M-W test is nonparametric and p-values are not used here.

Returns

• bool – True if the sample appears male.

• dict – Calculated values used for the inference: relative log2 ratios of chromosomes X
and Y versus the autosomes; the Mann-Whitney U values from each test; and ratios of U
values for male vs. female assumption on chromosomes X and Y.

drop_low_coverage(verbose=False)
Drop bins with extremely low log2 coverage or copy ratio values.

These are generally bins that had no reads mapped due to sample-specific issues. A very small log2 ratio
or coverage value may have been substituted to avoid domain or divide-by-zero errors.

expect_flat_log2(is_male_reference=None)
Get the uninformed expected copy ratios of each bin.

46 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

Create an array of log2 coverages like a “flat” reference.

This is a neutral copy ratio at each autosome (log2 = 0.0) and sex chromosomes based on whether the
reference is male (XX or XY).

guess_xx(male_reference=False, verbose=True)
Detect chromosomal sex; return True if a sample is probably female.

Uses compare_sex_chromosomes to calculate coverage ratios of the X and Y chromosomes versus auto-
somes.

Parameters

• male_reference (bool) – Was this sample normalized to a male reference copy num-
ber profile?

• verbose (bool) – If True, print (i.e. log to console) the ratios of the log2 coverages
of the X and Y chromosomes versus autosomes, the “maleness” ratio of male vs. female
expectations for each sex chromosome, and the inferred chromosomal sex.

Returns True if the coverage ratios indicate the sample is female.

Return type bool

log2

residuals(segments=None)
Difference in log2 value of each bin from its segment mean.

Parameters segments (GenomicArray, CopyNumArray, or None) – Determines
the “mean” value to which self log2 values are relative:

• If CopyNumArray, use the log2 values as the segment means to subtract.

• If GenomicArray with no log2 values, group self by these ranges and subtract each group’s
median log2 value.

• If None, subtract each chromosome’s median.

Returns Residual log2 values from self relative to segments; same length as self.

Return type array

shift_xx(male_reference=False, is_xx=None)
Adjust chrX log2 ratios (subtract 1) for apparent female samples.

squash_genes(summary_func=<function biweight_location>, squash_antitarget=False, ignore=(‘-‘,
‘.’, ‘CGH’), squash_background=None)

Combine consecutive bins with the same targeted gene name.

Parameters

• summary_func (callable) – Function to summarize an array of log2 values to pro-
duce a new log2 value for a “squashed” (i.e. reduced) region. By default this is the
biweight location, but you might want median, mean, max, min or something else in some
cases.

• squash_antitarget (bool) – If True, also reduce consecutive “Antitarget” bins into
a single bin. Otherwise, keep “Antitarget” and ignored bins as they are in the output.

• ignore (list or tuple of str) – Bin names to be treated as “Antitarget” instead
of as unique genes.

Returns Another, usually smaller, copy of self with each gene’s bins reduced to a single bin
with appropriate values.

4.1. cnvlib package 47

CNVkit Documentation, Release 0.9.0

Return type CopyNumArray

vary

An array of genomic intervals, treated as variant loci.

class cnvlib.vary.VariantArray(data_table, meta_dict=None)
Bases: skgenome.gary.GenomicArray

An array of genomic intervals, treated as variant loci.

Required columns: chromosome, start, end, ref, alt

baf_by_ranges(ranges, summary_func=<function nanmedian>, above_half=None, tu-
mor_boost=False)

Aggregate variant (b-allele) frequencies in each given bin.

Get the average BAF in each of the bins of another genomic array: BAFs are mirrored above/below 0.5 (per
above_half), grouped in each bin of ranges, and summarized into one value per bin with summary_func
(default median).

Parameters

• ranges (GenomicArray or subclass) – Bins for grouping the variants in self.

• above_half (bool) – The same as in mirrored_baf.

• tumor_boost (bool) – The same as in mirrored_baf.

Returns Average b-allele frequency in each range; same length as ranges. May contain NaN
values where no variants overlap a range.

Return type float array

heterozygous()
Subset to only heterozygous variants.

Use ‘zygosity’ or ‘n_zygosity’ genotype values (if present) to exclude variants with value 0.0 or 1.0. If
these columns are missing, or there are no heterozygous variants, then return the full (input) set of variants.

Returns The subset of self with heterozygous genotype, or allele frequency between the speci-
fied thresholds.

Return type VariantArray

mirrored_baf(above_half=None, tumor_boost=False)
Mirrored B-allele frequencies (BAFs).

Parameters

• above_half (bool or None) – If specified, flip BAFs to be all above 0.5 (True) or
below 0.5 (False), respectively, for consistency. Otherwise, if None, mirror in the direction
of the majority of BAFs.

• tumor_boost (bool) – Normalize tumor-sample allele frequencies to the matched nor-
mal sample’s allele frequencies.

Returns Mirrored b-allele frequencies, the same length as self. May contain NaN values.

Return type float array

tumor_boost()
TumorBoost normalization of tumor-sample allele frequencies.

De-noises the signal for detecting LOH.

48 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

See: TumorBoost, Bengtsson et al. 2010

zygosity_from_freq(het_freq=0.0, hom_freq=1.0)
Set zygosity (genotype) according to allele frequencies.

Creates or replaces ‘zygosity’ column if ‘alt_freq’ column is present, and ‘n_zygosity’ if ‘n_alt_freq’ is
present.

Parameters

• het_freq (float) – Assign zygosity 0.5 (heterozygous), otherwise 0.0 (i.e. reference
genotype), to variants with alt allele frequency of at least this value.

• hom_freq (float) – Assign zygosity 1.0 (homozygous) to variants with alt allele fre-
quency of at least this value.

Interface to CNVkit sub-commands

commands

The public API for each of the commands defined in the CNVkit workflow. Command-line interface and correspond-
ing API for CNVkit.

cnvlib.commands.do_target(bait_arr, annotate=None, do_short_names=False, do_split=False,
avg_size=266.6666666666667)

Transform bait intervals into targets more suitable for CNVkit.

cnvlib.commands.do_access(fa_fname, exclude_fnames=(), min_gap_size=5000)
List the locations of accessible sequence regions in a FASTA file.

cnvlib.commands.do_antitarget(targets, access=None, avg_bin_size=150000,
min_bin_size=None)

Derive off-targt (“antitarget”) bins from target regions.

cnvlib.commands.do_autobin(bam_fname, method, targets=None, access=None,
bp_per_bin=100000.0, target_min_size=20, target_max_size=20000,
antitarget_min_size=500, antitarget_max_size=500000)

Quickly calculate reasonable bin sizes from BAM read counts.

Parameters

• bam_fname (string) – BAM filename.

• method (string) – One of: ‘wgs’ (whole-genome sequencing), ‘amplicon’ (targeted
amplicon capture), ‘hybrid’ (hybridization capture).

• targets (GenomicArray) – Targeted genomic regions (for ‘hybrid’ and ‘amplicon’).

• access (GenomicArray) – Sequencing-accessible regions of the reference genome (for
‘hybrid’ and ‘wgs’).

• bp_per_bin (int) – Desired number of sequencing read nucleotide bases mapped to
each bin.

Returns

((target depth, target avg. bin size), (antitarget depth, antitarget avg. bin size))

Return type 2-tuple of 2-tuples

cnvlib.commands.do_coverage(bed_fname, bam_fname, by_count=False, min_mapq=0, pro-
cesses=1)

Calculate coverage in the given regions from BAM read depths.

4.1. cnvlib package 49

CNVkit Documentation, Release 0.9.0

cnvlib.commands.do_reference(target_fnames, antitarget_fnames=None, fa_fname=None,
male_reference=False, female_samples=None, do_gc=True,
do_edge=True, do_rmask=True)

Compile a coverage reference from the given files (normal samples).

cnvlib.commands.do_reference_flat(targets, antitargets=None, fa_fname=None,
male_reference=False)

Compile a neutral-coverage reference from the given intervals.

Combines the intervals, shifts chrX values if requested, and calculates GC and RepeatMasker content from the
genome FASTA sequence.

cnvlib.commands.do_fix(target_raw, antitarget_raw, reference, do_gc=True, do_edge=True,
do_rmask=True)

Combine target and antitarget coverages and correct for biases.

cnvlib.commands.do_segmentation(cnarr, method, threshold=None, variants=None,
skip_low=False, skip_outliers=10, save_dataframe=False,
rlibpath=None, processes=1)

Infer copy number segments from the given coverage table.

cnvlib.commands.do_call(cnarr, variants=None, method=’threshold’, ploidy=2, purity=None,
is_reference_male=False, is_sample_female=False, filters=None,
thresholds=(-1.1, -0.25, 0.2, 0.7))

cnvlib.commands.do_scatter(cnarr, segments=None, variants=None, show_range=None,
show_gene=None, antitarget_marker=None, do_trend=False,
window_width=1000000.0, y_min=None, y_max=None, title=None,
segment_color=’darkorange’, background_marker=None)

Plot probe log2 coverages and segmentation calls together.

cnvlib.commands.do_heatmap(cnarrs, show_range=None, do_desaturate=False)
Plot copy number for multiple samples as a heatmap.

cnvlib.commands.do_breaks(probes, segments, min_probes=1)
List the targeted genes in which a copy number breakpoint occurs.

cnvlib.commands.do_gainloss(cnarr, segments=None, threshold=0.2, min_probes=3,
skip_low=False, male_reference=False, is_sample_female=None)

Identify targeted genes with copy number gain or loss.

cnvlib.commands.do_sex(cnarrs, is_male_reference)
Guess samples’ sex from the relative coverage of chromosomes X and Y.

cnvlib.commands.do_sex(cnarrs, is_male_reference)
Guess samples’ sex from the relative coverage of chromosomes X and Y.

cnvlib.commands.do_metrics(cnarrs, segments=None, skip_low=False)
Compute coverage deviations and other metrics for self-evaluation.

cnvlib.commands.do_import_theta(segarr, theta_results_fname, ploidy=2)

The following modules implement lower-level functionality specific to each of the CNVkit sub-commands.

access

List the locations of accessible sequence regions in a FASTA file.

Inaccessible regions, e.g. telomeres and centromeres, are masked out with N in the reference genome sequence; this
script scans those to identify the coordinates of the accessible regions (those between the long spans of N’s).

cnvlib.access.do_access(fa_fname, exclude_fnames=(), min_gap_size=5000)
List the locations of accessible sequence regions in a FASTA file.

50 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

cnvlib.access.get_regions(fasta_fname)
Find accessible sequence regions (those not masked out with ‘N’).

cnvlib.access.join_regions(regions, min_gap_size)
Filter regions, joining those separated by small gaps.

cnvlib.access.log_this(chrom, run_start, run_end)
Log a coordinate range, then return it as a tuple.

antitarget

Supporting functions for the ‘antitarget’ command.

cnvlib.antitarget.compare_chrom_names(a_regions, b_regions)

cnvlib.antitarget.do_antitarget(targets, access=None, avg_bin_size=150000,
min_bin_size=None)

Derive off-targt (“antitarget”) bins from target regions.

cnvlib.antitarget.get_antitargets(targets, accessible, avg_bin_size, min_bin_size)
Generate antitarget intervals between/around target intervals.

Procedure:

•Invert target intervals

•Subtract the inverted targets from accessible regions

•For each of the resulting regions:

–Shrink by a fixed margin on each end

–If it’s smaller than min_bin_size, skip

–Divide into equal-size (region_size/avg_bin_size) portions

–Emit the (chrom, start, end) coords of each portion

cnvlib.antitarget.guess_chromosome_regions(targets, telomere_size)
Determine (minimum) chromosome lengths from target coordinates.

autobin

Estimate reasonable bin sizes from BAM read counts or depths.

cnvlib.autobin.average_depth(rc_table, read_length)
Estimate the average read depth across the genome.

Returns Median of the per-chromosome mean read depths, weighted by chromosome size.

Return type float

cnvlib.autobin.do_autobin(bam_fname, method, targets=None, access=None,
bp_per_bin=100000.0, target_min_size=20, target_max_size=20000,
antitarget_min_size=500, antitarget_max_size=500000)

Quickly calculate reasonable bin sizes from BAM read counts.

Parameters

• bam_fname (string) – BAM filename.

• method (string) – One of: ‘wgs’ (whole-genome sequencing), ‘amplicon’ (targeted
amplicon capture), ‘hybrid’ (hybridization capture).

4.1. cnvlib package 51

CNVkit Documentation, Release 0.9.0

• targets (GenomicArray) – Targeted genomic regions (for ‘hybrid’ and ‘amplicon’).

• access (GenomicArray) – Sequencing-accessible regions of the reference genome (for
‘hybrid’ and ‘wgs’).

• bp_per_bin (int) – Desired number of sequencing read nucleotide bases mapped to
each bin.

Returns

((target depth, target avg. bin size), (antitarget depth, antitarget avg. bin size))

Return type 2-tuple of 2-tuples

cnvlib.autobin.hybrid(rc_table, read_len, bam_fname, targets, access=None)
Hybrid capture sequencing.

cnvlib.autobin.idxstats2ga(table)

cnvlib.autobin.midsize_file(fnames)
Select the median-size file from several given filenames.

If an even number of files is given, selects the file just below the median.

cnvlib.autobin.region_size_by_chrom(regions)

cnvlib.autobin.sample_midsize_regions(regions, max_num)
Randomly select a subset of up to max_num regions.

cnvlib.autobin.sample_region_cov(bam_fname, regions, max_num=100)
Calculate read depth in a randomly sampled subset of regions.

cnvlib.autobin.shared_chroms(*tables)
Intersection of DataFrame .chromosome values.

cnvlib.autobin.total_region_size(regions)
Aggregate area of all genomic ranges in regions.

cnvlib.autobin.update_chrom_length(rc_table, regions)

batch

The ‘batch’ command.

cnvlib.batch.batch_make_reference(normal_bams, target_bed, antitarget_bed, male_reference,
fasta, annotate, short_names, target_avg_size, access_bed,
antitarget_avg_size, antitarget_min_size, output_reference,
output_dir, processes, by_count, method)

Build the CN reference from normal samples, targets and antitargets.

cnvlib.batch.batch_run_sample(bam_fname, target_bed, antitarget_bed, ref_fname, output_dir,
male_reference, plot_scatter, plot_diagram, rlibpath, by_count,
skip_low, method, processes)

Run the pipeline on one BAM file.

cnvlib.batch.batch_write_coverage(bed_fname, bam_fname, out_fname, by_count, processes)
Run coverage on one sample, write to file.

call

Call copy number variants from segmented log2 ratios.

52 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

cnvlib.call.absolute_clonal(cnarr, ploidy, purity, is_reference_male, is_sample_female)
Calculate absolute copy number values from segment or bin log2 ratios.

cnvlib.call.absolute_dataframe(cnarr, ploidy, purity, is_reference_male, is_sample_female)
Absolute, expected and reference copy number in a DataFrame.

cnvlib.call.absolute_expect(cnarr, ploidy, is_sample_female)
Absolute integer number of expected copies in each bin.

I.e. the given ploidy for autosomes, and XY or XX sex chromosome counts according to the sample’s specified
chromosomal sex.

cnvlib.call.absolute_pure(cnarr, ploidy, is_reference_male)
Calculate absolute copy number values from segment or bin log2 ratios.

cnvlib.call.absolute_reference(cnarr, ploidy, is_reference_male)
Absolute integer number of reference copies in each bin.

I.e. the given ploidy for autosomes, 1 or 2 X according to the reference sex, and always 1 copy of Y.

cnvlib.call.absolute_threshold(cnarr, ploidy, thresholds, is_reference_male)
Call integer copy number using hard thresholds for each level.

Integer values are assigned for log2 ratio values less than each given threshold value in sequence, counting up
from zero. Above the last threshold value, integer copy numbers are called assuming full purity, diploidy, and
rounding up.

Default thresholds follow this heuristic for calling CNAs in a tumor sample: For single-copy gains and losses,
assume 50% tumor cell clonality (including normal cell contamination). Then:

R> log2(2:6 / 4)
-1.0 -0.4150375 0.0 0.3219281 0.5849625

Allowing for random noise of +/- 0.1, the cutoffs are:

DEL(0) < -1.1
LOSS(1) < -0.25
GAIN(3) >= +0.2
AMP(4) >= +0.7

For germline samples, better precision could be achieved with:

LOSS(1) < -0.4
GAIN(3) >= +0.3

cnvlib.call.do_call(cnarr, variants=None, method=’threshold’, ploidy=2, purity=None,
is_reference_male=False, is_sample_female=False, filters=None, thresholds=(-
1.1, -0.25, 0.2, 0.7))

cnvlib.call.log2_ratios(cnarr, absolutes, ploidy, is_reference_male, min_abs_val=0.001,
round_to_int=False)

Convert absolute copy numbers to log2 ratios.

Optionally round copy numbers to integers.

Account for reference sex & ploidy of sex chromosomes.

cnvlib.call.rescale_baf(purity, observed_baf, normal_baf=0.5)
Adjust B-allele frequencies for sample purity.

Math:

4.1. cnvlib package 53

CNVkit Documentation, Release 0.9.0

t_baf*purity + n_baf*(1-purity) = obs_baf
obs_baf - n_baf * (1-purity) = t_baf * purity
t_baf = (obs_baf - n_baf * (1-purity))/purity

coverage

Supporting functions for the ‘antitarget’ command.

cnvlib.coverage.bedcov(bed_fname, bam_fname, min_mapq)
Calculate depth of all regions in a BED file via samtools (pysam) bedcov.

i.e. mean pileup depth across each region.

cnvlib.coverage.detect_bedcov_columns(text)

cnvlib.coverage.do_coverage(bed_fname, bam_fname, by_count=False, min_mapq=0, pro-
cesses=1)

Calculate coverage in the given regions from BAM read depths.

cnvlib.coverage.interval_coverages(bed_fname, bam_fname, by_count, min_mapq, processes)
Calculate log2 coverages in the BAM file at each interval.

cnvlib.coverage.interval_coverages_count(bed_fname, bam_fname, min_mapq, procs=1)
Calculate log2 coverages in the BAM file at each interval.

cnvlib.coverage.interval_coverages_pileup(bed_fname, bam_fname, min_mapq, procs=1)
Calculate log2 coverages in the BAM file at each interval.

cnvlib.coverage.region_depth_count(bamfile, chrom, start, end, gene, min_mapq)
Calculate depth of a region via pysam count.

i.e. counting the number of read starts in a region, then scaling for read length and region width to estimate
depth.

Coordinates are 0-based, per pysam.

diagram

Chromosome diagram drawing functions.

This uses and abuses Biopython’s BasicChromosome module. It depends on ReportLab, too, so we isolate this func-
tionality here so that the rest of CNVkit will run without it. (And also to keep the codebase tidy.)

cnvlib.diagram.bc_chromosome_draw_label(self, cur_drawing, label_name)
Monkeypatch to Bio.Graphics.BasicChromosome.Chromosome._draw_label.

Draw a label for the chromosome. Mod: above the chromosome, not below.

cnvlib.diagram.bc_organism_draw(org, title, wrap=12)
Modified copy of Bio.Graphics.BasicChromosome.Organism.draw.

Instead of stacking chromosomes horizontally (along the x-axis), stack rows vertically, then proceed with the
chromosomes within each row.

Parameters

• org – The chromosome diagram object being modified.

• title (str) – The output title of the produced document.

54 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

• wrap (int) – Maximum number of chromosomes per row; the remainder will be wrapped
to the next row(s).

cnvlib.diagram.build_chrom_diagram(features, chr_sizes, sample_id, title=None)
Create a PDF of color-coded features on chromosomes.

cnvlib.diagram.create_diagram(cnarr, segarr, threshold, min_probes, outfname, title=None)
Create the diagram.

export

Export CNVkit objects and files to other formats.

cnvlib.export.assign_ci_start_end(segarr, cnarr)
Assign ci_start and ci_end fields to segments.

Values for each segment indicate the CI boundary points within that segment, i.e. the right CI boundary for the
left-side breakpoint (segment start), and left CI boundary for the right-side breakpoint (segment end).

This is a little unintuitive because the CI refers to the breakpoint, not the segment, but we’re storing the info in
an array of segments.

Calculation: Just use the boundaries of the bins left- and right-adjacent to each segment breakpoint.

cnvlib.export.export_bed(segments, ploidy, is_reference_male, is_sample_female, label, show)
Convert a copy number array to a BED-like DataFrame.

For each region in each sample (possibly filtered according to show), the columns are:

•reference sequence name

•start (0-indexed)

•end

•sample name or given label

•integer copy number

By default (show=”ploidy”), skip regions where copy number is the default ploidy, i.e. equal to 2 or the value
set by –ploidy. If show=”variant”, skip regions where copy number is neutral, i.e. equal to the reference ploidy
on autosomes, or half that on sex chromosomes.

cnvlib.export.export_nexus_basic(cnarr)
Biodiscovery Nexus Copy Number “basic” format.

Only represents one sample per file.

cnvlib.export.export_nexus_ogt(cnarr, varr, min_weight=0.0)
Biodiscovery Nexus Copy Number “Custom-OGT” format.

To create the b-allele frequencies column, alterate allele frequencies from the VCF are aligned to the .cnr file
bins. Bins that contain no variants are left blank; if a bin contains multiple variants, then the frequencies are all
“mirrored” to be above or below .5 (majority rules), then the median of those values is taken.

cnvlib.export.export_seg(sample_fnames, chrom_ids=None)
SEG format for copy number segments.

Segment breakpoints are not the same across samples, so samples are listed in serial with the sample ID as the
left column.

cnvlib.export.export_theta(tumor_segs, normal_cn)
Convert tumor segments and normal .cnr or reference .cnn to THetA input.

4.1. cnvlib package 55

CNVkit Documentation, Release 0.9.0

Follows the THetA segmentation import script but avoid repeating the pileups, since we already have the mean
depth of coverage in each target bin.

The options for average depth of coverage and read length do not matter crucially for proper operation of THetA;
increased read counts per bin simply increase the confidence of THetA’s results.

THetA2 input format is tabular, with columns: ID, chrm, start, end, tumorCount, normalCount

where chromosome IDs (“chrm”) are integers 1 through 24.

cnvlib.export.export_theta_snps(varr)
Generate THetA’s SNP per-allele read count “formatted.txt” files.

cnvlib.export.export_vcf(segments, ploidy, is_reference_male, is_sample_female, sam-
ple_id=None, cnarr=None)

Convert segments to Variant Call Format.

For now, only 1 sample per VCF. (Overlapping CNVs seem tricky.)

Spec: https://samtools.github.io/hts-specs/VCFv4.2.pdf

cnvlib.export.fmt_cdt(sample_ids, table)
Format as CDT.

See:

•http://jtreeview.sourceforge.net/docs/JTVUserManual/ch02s11.html

•http://www.eisenlab.org/FuzzyK/cdt.html

cnvlib.export.fmt_gct(sample_ids, table)

cnvlib.export.fmt_jtv(sample_ids, table)
Format for Java TreeView.

cnvlib.export.merge_samples(filenames)
Merge probe values from multiple samples into a 2D table (of sorts).

Input: dict of {sample ID: (probes, values)}

Output: list-of-tuples: (probe, log2 coverages...)

cnvlib.export.ref_means_nbins(tumor_segs, normal_cn)
Extract segments’ reference mean log2 values and probe counts.

Code paths:

wt_mdn wt_old probes norm -> norm, nbins
+ * * - 0, wt_mdn
- + + - 0, wt_old * probes
- + - - 0, wt_old * size?
- - + - 0, probes
- - - - 0, size?

+ - + + norm, probes
+ - - + norm, bin counts
- + + + norm, probes
- + - + norm, bin counts
- - + + norm, probes
- - - + norm, bin counts

cnvlib.export.segments2vcf(segments, ploidy, is_reference_male, is_sample_female)
Convert copy number segments to VCF records.

56 Chapter 4. Python API

https://samtools.github.io/hts-specs/VCFv4.2.pdf
http://jtreeview.sourceforge.net/docs/JTVUserManual/ch02s11.html
http://www.eisenlab.org/FuzzyK/cdt.html

CNVkit Documentation, Release 0.9.0

cnvlib.export.theta_read_counts(log2_ratio, nbins, avg_depth=500, avg_bin_width=200,
read_len=100)

Calculate segments’ read counts from log2-ratios.

Math: nbases = read_length * read_count

and nbases = bin_width * read_depth

where read_depth = read_depth_ratio * avg_depth

So: read_length * read_count = bin_width * read_depth read_count = bin_width * read_depth / read_length

fix

Supporting functions for the ‘fix’ command.

cnvlib.fix.apply_weights(cnarr, ref_matched, epsilon=0.0001)
Calculate weights for each bin.

Weights are derived from:

•bin sizes

•average bin coverage depths in the reference

•the “spread” column of the reference.

cnvlib.fix.center_by_window(cnarr, fraction, sort_key)
Smooth out biases according to the trait specified by sort_key.

E.g. correct GC-biased bins by windowed averaging across similar-GC bins; or for similar interval sizes.

cnvlib.fix.do_fix(target_raw, antitarget_raw, reference, do_gc=True, do_edge=True,
do_rmask=True)

Combine target and antitarget coverages and correct for biases.

cnvlib.fix.edge_gains(target_sizes, gap_sizes, insert_size)
Calculate coverage gain from neighboring baits’ flanking reads.

Letting i = insert size, t = target size, g = gap to neighboring bait, the gain of coverage due to a nearby bait, if g
< i, is:

.. math :: (i-g)^2 / 4it

If the neighbor flank extends beyond the target (t+g < i), reduce by:

.. math :: (i-t-g)^2 / 4it

If a neighbor overlaps the target, treat it as adjacent (gap size 0).

cnvlib.fix.edge_losses(target_sizes, insert_size)
Calculate coverage losses at the edges of baited regions.

Letting i = insert size and t = target size, the proportional loss of coverage near the two edges of the baited region
(combined) is:

𝑖/2𝑡

If the “shoulders” extend outside the bait $(t < i), reduce by:

(𝑖− 𝑡)2/4𝑖𝑡

on each side, or (i-t)^2 / 2it total.

4.1. cnvlib package 57

CNVkit Documentation, Release 0.9.0

cnvlib.fix.get_edge_bias(cnarr, margin)
Quantify the “edge effect” of the target tile and its neighbors.

The result is proportional to the change in the target’s coverage due to these edge effects, i.e. the expected loss
of coverage near the target edges and, if there are close neighboring tiles, gain of coverage due to “spill over”
reads from the neighbor tiles.

(This is not the actual change in coverage. This is just a tribute.)

cnvlib.fix.load_adjust_coverages(cnarr, ref_cnarr, skip_low, fix_gc, fix_edge, fix_rmask)
Load and filter probe coverages; correct using reference and GC.

cnvlib.fix.mask_bad_bins(cnarr)
Flag the bins with excessively low or inconsistent coverage.

Returns A boolean array where True indicates bins that failed the checks.

Return type np.array

cnvlib.fix.match_ref_to_sample(ref_cnarr, samp_cnarr)
Filter the reference bins to match the sample (target or antitarget).

heatmap

The ‘heatmap’ command.

cnvlib.heatmap.do_heatmap(cnarrs, show_range=None, do_desaturate=False)
Plot copy number for multiple samples as a heatmap.

cnvlib.heatmap.set_colorbar(axis)

importers

Import from other formats to the CNVkit format.

cnvlib.importers.do_import_picard(fname, too_many_no_coverage=100)

cnvlib.importers.do_import_theta(segarr, theta_results_fname, ploidy=2)

cnvlib.importers.parse_theta_results(fname)
Parse THetA results into a data structure.

Columns: NLL, mu, C, p*

cnvlib.importers.unpipe_name(name)
Fix the duplicated gene names Picard spits out.

Return a string containing the single gene name, sans duplications and pipe characters.

Picard CalculateHsMetrics combines the labels of overlapping intervals by joining all labels with ‘|’, e.g.
‘BRAF|BRAF’ – no two distinct targeted genes actually overlap, though, so these dupes are redundant. Mean-
ingless target names are dropped, e.g. ‘CGH|FOO|-‘ resolves as ‘FOO’. In case of ambiguity, the longest name
is taken, e.g. “TERT|TERT Promoter” resolves as “TERT Promoter”.

metrics

Robust metrics to evaluate performance of copy number estimates.

cnvlib.metrics.confidence_interval_bootstrap(bins, alpha, bootstraps=100,
smoothed=True)

Confidence interval for segment mean log2 value, estimated by bootstrap.

58 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

cnvlib.metrics.do_metrics(cnarrs, segments=None, skip_low=False)
Compute coverage deviations and other metrics for self-evaluation.

cnvlib.metrics.ests_of_scale(deviations)
Estimators of scale: standard deviation, MAD, biweight midvariance.

Calculates all of these values for an array of deviations and returns them as a tuple.

cnvlib.metrics.prediction_interval(bins, alpha)
Prediction interval, estimated by percentiles.

cnvlib.metrics.segment_mean(cnarr, skip_low=False)
Weighted average of bin log2 values.

cnvlib.metrics.zip_repeater(iterable, repeatable)
Repeat a single segmentation to match the number of copy ratio inputs

reference

Supporting functions for the ‘reference’ command.

cnvlib.reference.bed2probes(bed_fname)
Create a neutral-coverage CopyNumArray from a file of regions.

cnvlib.reference.calculate_gc_lo(subseq)
Calculate the GC and lowercase (RepeatMasked) content of a string.

cnvlib.reference.combine_probes(filenames, fa_fname, is_male_reference, sexes, skip_low,
fix_gc, fix_edge, fix_rmask)

Calculate the median coverage of each bin across multiple samples.

Parameters

• filenames (list) – List of string filenames, corresponding to targetcoverage.cnn and
antitargetcoverage.cnn files, as generated by ‘coverage’ or ‘import-picard’.

• fa_fname (str) – Reference genome sequence in FASTA format, used to extract GC and
RepeatMasker content of each genomic bin.

• is_male_reference (bool) –

• skip_low (bool) –

• fix_gc (bool) –

• fix_edge (bool) –

• fix_rmask (bool) –

Returns One object summarizing the coverages of the input samples, including each bin’s “average”
coverage, “spread” of coverages, and GC content.

Return type CopyNumArray

cnvlib.reference.do_reference(target_fnames, antitarget_fnames=None, fa_fname=None,
male_reference=False, female_samples=None, do_gc=True,
do_edge=True, do_rmask=True)

Compile a coverage reference from the given files (normal samples).

cnvlib.reference.do_reference_flat(targets, antitargets=None, fa_fname=None,
male_reference=False)

Compile a neutral-coverage reference from the given intervals.

4.1. cnvlib package 59

CNVkit Documentation, Release 0.9.0

Combines the intervals, shifts chrX values if requested, and calculates GC and RepeatMasker content from the
genome FASTA sequence.

cnvlib.reference.fasta_extract_regions(fa_fname, intervals)
Extract an iterable of regions from an indexed FASTA file.

Input: FASTA file name; iterable of (seq_id, start, end) (1-based) Output: iterable of string sequences.

cnvlib.reference.get_fasta_stats(cnarr, fa_fname)
Calculate GC and RepeatMasker content of each bin in the FASTA genome.

cnvlib.reference.infer_sexes(cnn_fnames, is_male_reference)
Map sample IDs to inferred chromosomal sex, where possible.

For samples where the source file is empty or does not include either sex chromosome, that sample ID will not
be in the returned dictionary.

cnvlib.reference.reference2regions(refarr)
Split reference into target and antitarget regions.

cnvlib.reference.warn_bad_bins(cnarr, max_name_width=50)
Warn about target bins where coverage is poor.

Prints a formatted table to stderr.

reports

Supports the sub-commands breaks and gainloss. Supporting functions for the text/tabular-reporting commands.

Namely: breaks, gainloss.

cnvlib.reports.gainloss_by_gene(cnarr, threshold, skip_low=False)
Identify genes where average bin copy ratio value exceeds threshold.

NB: Must shift sex-chromosome values beforehand with shift_xx, otherwise all chrX/chrY genes may be re-
ported gained/lost.

cnvlib.reports.gainloss_by_segment(cnarr, segments, threshold, skip_low=False)
Identify genes where segmented copy ratio exceeds threshold.

NB: Must shift sex-chromosome values beforehand with shift_xx, otherwise all chrX/chrY genes may be re-
ported gained/lost.

cnvlib.reports.get_breakpoints(intervals, segments, min_probes)
Identify CBS segment breaks within the targeted intervals.

cnvlib.reports.get_gene_intervals(all_probes, ignore=(‘-‘, ‘.’, ‘CGH’))
Tally genomic locations of each targeted gene.

Return a dict of chromosomes to a list of tuples: (gene name, starts, end), where gene name is a string, starts is
a sorted list of probe start positions, and end is the last probe’s end position as an integer. (The endpoints are
redundant since probes are adjacent.)

cnvlib.reports.group_by_genes(cnarr, skip_low)
Group probe and coverage data by gene.

Return an iterable of genes, in chromosomal order, associated with their location and coverages:

[(gene, chrom, start, end, [coverages]), ...]

60 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

scatter

Command-line interface and corresponding API for CNVkit.

cnvlib.scatter.chromosome_scatter(cnarr, segments, variants, show_range, show_gene, antitar-
get_marker, do_trend, window_width, y_min, y_max, title,
segment_color)

Plot a specified region on one chromosome.

Possibilities:

Options	Shown
-c | -g | Genes | Region
------- | -- | ----- | ------
- | + | given | auto: gene(s) + margin
chr | - | none | whole chrom
chr | + | given | whole chrom
chr:s-e | - | all | given
chr:s-e | + | given | given

cnvlib.scatter.cnv_on_chromosome(axis, probes, segments, genes, antitarget_marker=None,
do_trend=False, x_limits=None, y_min=None, y_max=None,
segment_color=’darkorange’)

Draw a scatter plot of probe values with CBS calls overlaid.

Parameters genes (list) – Of tuples: (start, end, gene name)

cnvlib.scatter.cnv_on_genome(axis, probes, segments, do_trend=False, y_min=None,
y_max=None, segment_color=’darkorange’)

Plot coverages and CBS calls for all chromosomes on one plot.

cnvlib.scatter.do_scatter(cnarr, segments=None, variants=None, show_range=None,
show_gene=None, antitarget_marker=None, do_trend=False, win-
dow_width=1000000.0, y_min=None, y_max=None, title=None,
segment_color=’darkorange’, background_marker=None)

Plot probe log2 coverages and segmentation calls together.

cnvlib.scatter.genome_scatter(cnarr, segments=None, variants=None, do_trend=False,
y_min=None, y_max=None, title=None, seg-
ment_color=’darkorange’)

Plot all chromosomes, concatenated on one plot.

cnvlib.scatter.group_snvs_by_segments(snv_posns, snv_freqs, segments, chrom=None)
Group SNP allele frequencies by segment.

Yields tuple – (start, end, value)

cnvlib.scatter.set_xlim_from(axis, probes=None, segments=None, variants=None)
Configure axes for plotting a single chromosome’s data.

Parameters

• probes (CopyNumArray) –

• segments (CopyNumArray) –

• variants (VariantArray) – All should already be subsetted to the region that will be
plotted.

cnvlib.scatter.setup_chromosome(axis, y_min=None, y_max=None, y_label=None)
Configure axes for plotting a single chromosome’s data.

4.1. cnvlib package 61

CNVkit Documentation, Release 0.9.0

cnvlib.scatter.snv_on_chromosome(axis, variants, segments, genes, do_trend)

cnvlib.scatter.snv_on_genome(axis, variants, chrom_sizes, segments, do_trend)
Plot a scatter-plot of SNP chromosomal positions and shifts.

segmentation

Segmentation of copy number values.

cnvlib.segmentation.do_segmentation(cnarr, method, threshold=None, vari-
ants=None, skip_low=False, skip_outliers=10,
save_dataframe=False, rlibpath=None, processes=1)

Infer copy number segments from the given coverage table.

cnvlib.segmentation.drop_outliers(cnarr, width, factor)
Drop outlier bins with log2 ratios too far from the trend line.

Outliers are the log2 values factor times the 90th quantile of absolute deviations from the rolling average, within
a window of given width. The 90th quantile is about 1.97 standard deviations if the log2 values are Gaussian, so
this is similar to calling outliers factor * 1.97 standard deviations from the rolling mean. For a window size of
50, the breakdown point is 2.5 outliers within a window, which is plenty robust for our needs.

cnvlib.segmentation.repair_segments(segments, orig_probes)
Post-process segmentation output.

1.Ensure every chromosome has at least one segment.

2.Ensure first and last segment ends match 1st/last bin ends (but keep log2 as-is).

cnvlib.segmentation.squash_segments(segments)
Combine contiguous segments.

cnvlib.segmentation.transfer_fields(segments, cnarr, ignore=(‘-‘, ‘.’, ‘CGH’))
Map gene names, weights, depths from cnarr bins to segarr segments.

Segment gene name is the comma-separated list of bin gene names. Segment weight is the sum of bin weights,
and depth is the (weighted) mean of bin depths.

target

Transform bait intervals into targets more suitable for CNVkit.

cnvlib.target.do_target(bait_arr, annotate=None, do_short_names=False, do_split=False,
avg_size=266.6666666666667)

Transform bait intervals into targets more suitable for CNVkit.

cnvlib.target.filter_names(names, exclude=(‘mRNA’,))
Remove less-meaningful accessions from the given set.

cnvlib.target.shorten_labels(gene_labels)
Reduce multi-accession interval labels to the minimum consistent.

So: BED or interval_list files have a label for every region. We want this to be a short, unique string, like the
gene name. But if an interval list is instead a series of accessions, including additional accessions for sub-regions
of the gene, we can extract a single accession that covers the maximum number of consecutive regions that share
this accession.

e.g.:

62 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

...
mRNA|JX093079,ens|ENST00000342066,mRNA|JX093077,ref|SAMD11,mRNA|AF161376,
→˓mRNA|JX093104
ens|ENST00000483767,mRNA|AF161376,ccds|CCDS3.1,ref|NOC2L
...

becomes:

...
mRNA|AF161376
mRNA|AF161376
...

cnvlib.target.shortest_name(names)
Return the shortest trimmed name from the given set.

Helper modules

cmdutil

Functions reused within command-line implementations.

cnvlib.cmdutil.load_het_snps(vcf_fname, sample_id=None, normal_id=None,
min_variant_depth=20, zygosity_freq=None, tumor_boost=False)

cnvlib.cmdutil.read_cna(infile, sample_id=None, meta=None)
Read a CNVkit file (.cnn, .cnr, .cns) to create a CopyNumArray object.

cnvlib.cmdutil.verify_sample_sex(cnarr, sex_arg, is_male_reference)

cnvlib.cmdutil.write_dataframe(outfname, dframe, header=True)
Write a pandas.DataFrame to a tabular file.

cnvlib.cmdutil.write_text(outfname, text, *more_texts)
Write one or more strings (blocks of text) to a file.

cnvlib.cmdutil.write_tsv(outfname, rows, colnames=None)
Write rows, with optional column header, to tabular file.

core

CNV utilities.

cnvlib.core.assert_equal(msg, **values)
Evaluate and compare two or more values for equality.

Sugar for a common assertion pattern. Saves re-evaluating (and retyping) the same values for comparison and
error reporting.

Example:

>>> assert_equal("Mismatch", expected=1, saw=len(['xx', 'yy']))
...
ValueError: Mismatch: expected = 1, saw = 2

cnvlib.core.call_quiet(*args)
Safely run a command and get stdout; print stderr if there’s an error.

4.1. cnvlib package 63

CNVkit Documentation, Release 0.9.0

Like subprocess.check_output, but silent in the normal case where the command logs unimportant stuff to stderr.
If there is an error, then the full error message(s) is shown in the exception message.

cnvlib.core.check_unique(items, title)
Ensure all items in an iterable are identical; return that one item.

cnvlib.core.ensure_path(fname)
Create dirs and move an existing file to avoid overwriting, if necessary.

If a file already exists at the given path, it is renamed with an integer suffix to clear the way.

cnvlib.core.fbase(fname)
Strip directory and all extensions from a filename.

cnvlib.core.temp_write_text(*args, **kwds)
Save text to a temporary file.

NB: This won’t work on Windows b/c the file stays open.

descriptives

Robust estimators of central tendency and scale.

See: https://en.wikipedia.org/wiki/Robust_measures_of_scale https://astropy.readthedocs.io/en/latest/_modules/
astropy/stats/funcs.html

cnvlib.descriptives.biweight_location(a, **kwargs)
Compute the biweight location for an array.

The biweight is a robust statistic for estimating the central location of a distribution.

cnvlib.descriptives.biweight_midvariance(a, **kwargs)
Compute the biweight midvariance for an array.

The biweight midvariance is a robust statistic for determining the midvariance (i.e. the standard deviation) of a
distribution.

See:

•https://en.wikipedia.org/wiki/Robust_measures_of_scale#The_biweight_midvariance

•https://astropy.readthedocs.io/en/latest/_modules/astropy/stats/funcs.html

cnvlib.descriptives.gapper_scale(a, **kwargs)
Scale estimator based on gaps between order statistics.

See:

•Wainer & Thissen (1976)

•Beers, Flynn, and Gebhardt (1990)

cnvlib.descriptives.interquartile_range(a, **kwargs)
Compute the difference between the array’s first and third quartiles.

cnvlib.descriptives.mean_squared_error(a, **kwargs)
Mean squared error (MSE).

By default, assume the input array a is the residuals/deviations/error, so MSE is calculated from zero. Another
reference point for calculating the error can be specified with initial.

cnvlib.descriptives.median_absolute_deviation(a, **kwargs)
Compute the median absolute deviation (MAD) of array elements.

The MAD is defined as: median(abs(a - median(a))).

64 Chapter 4. Python API

https://en.wikipedia.org/wiki/Robust_measures_of_scale
https://astropy.readthedocs.io/en/latest/_modules/astropy/stats/funcs.html
https://astropy.readthedocs.io/en/latest/_modules/astropy/stats/funcs.html
https://en.wikipedia.org/wiki/Robust_measures_of_scale#The_biweight_midvariance
https://astropy.readthedocs.io/en/latest/_modules/astropy/stats/funcs.html

CNVkit Documentation, Release 0.9.0

See: https://en.wikipedia.org/wiki/Median_absolute_deviation

cnvlib.descriptives.modal_location(a, **kwargs)
Return the modal value of an array’s values.

The “mode” is the location of peak density among the values, estimated using a Gaussian kernel density estima-
tor.

Parameters a (np.array) – A 1-D array of floating-point values, e.g. bin log2 ratio values.

cnvlib.descriptives.on_array(default=None)
Ensure a is a numpy array with no missing/NaN values.

cnvlib.descriptives.on_weighted_array(default=None)
Ensure a and w are equal-length numpy arrays with no NaN values.

For weighted descriptives – a is the array of values, w is weights.

1.Drop any cells in a that are NaN from both a and w

2.Replace any remaining NaN cells in w with 0.

cnvlib.descriptives.q_n(a, **kwargs)
Rousseeuw & Croux’s (1993) Q_n, an alternative to MAD.

Qn := Cn first quartile of (|x_i - x_j|: i < j)

where Cn is a constant depending on n.

Finite-sample correction factors must be used to calibrate the scale of Qn for small-to-medium-sized samples.

n E[Qn] – —– 10 1.392 20 1.193 40 1.093 60 1.064 80 1.048 100 1.038 200 1.019

cnvlib.descriptives.weighted_median(a, w, **kwargs)
Weighted median of a 1-D numeric array.

parallel

Utilities for multi-core parallel processing.

class cnvlib.parallel.SerialFuture(result)
Bases: future.types.newobject.newobject

Mimic the concurrent.futures.Future interface.

result()

class cnvlib.parallel.SerialPool
Bases: future.types.newobject.newobject

Mimic the concurrent.futures.Executor interface, but run in serial.

map(func, iterable)
Just apply the function to iterable.

shutdown(wait=True)
Do nothing.

submit(func, *args)
Just call the function on the arguments.

cnvlib.parallel.pick_pool(*args, **kwds)

cnvlib.parallel.rm(path)
Safely remove a file.

4.1. cnvlib package 65

https://en.wikipedia.org/wiki/Median_absolute_deviation

CNVkit Documentation, Release 0.9.0

cnvlib.parallel.to_chunks(bed_fname, chunk_size=5000)
Split the bed-file into chunks for parallelization

params

Defines several constants used in the pipeline. Hard-coded parameters for CNVkit. These should not change between
runs.

plots

Plotting utilities.

cnvlib.plots.chromosome_sizes(probes, to_mb=False)
Create an ordered mapping of chromosome names to sizes.

cnvlib.plots.cvg2rgb(cvg, desaturate)
Choose a shade of red or blue representing log2-coverage value.

cnvlib.plots.gene_coords_by_name(probes, names)
Find the chromosomal position of each named gene in probes.

Returns Of: {chromosome: [(start, end, gene name), ...]}

Return type dict

cnvlib.plots.gene_coords_by_range(probes, chrom, start, end, ignore=(‘-‘, ‘.’, ‘CGH’))
Find the chromosomal position of all genes in a range.

Returns Of: {chromosome: [(start, end, gene), ...]}

Return type dict

cnvlib.plots.partition_by_chrom(chrom_snvs)
Group the tumor shift values by chromosome (for statistical testing).

cnvlib.plots.plot_x_dividers(axis, chrom_sizes, pad=None)
Plot vertical dividers and x-axis labels given the chromosome sizes.

Draws vertical black lines between each chromosome, with padding. Labels each chromosome range with the
chromosome name, centered in the region, under a tick. Sets the x-axis limits to the covered range.

Returns A table of the x-position offsets of each chromosome.

Return type OrderedDict

cnvlib.plots.test_loh(bins, alpha=0.0025)
Test each chromosome’s SNP shifts and the combined others’.

The statistical test is Mann-Whitney, a one-sided non-parametric test for difference in means.

samutil

BAM utilities.

cnvlib.samutil.bam_total_reads(bam_fname)
Count the total number of mapped reads in a BAM file.

Uses the BAM index to do this quickly.

66 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

cnvlib.samutil.ensure_bam_index(bam_fname)
Ensure a BAM file is indexed, to enable fast traversal & lookup.

For MySample.bam, samtools will look for an index in these files, in order:

•MySample.bam.bai

•MySample.bai

cnvlib.samutil.ensure_bam_sorted(bam_fname, by_name=False, span=50)
Test if the reads in a BAM file are sorted as expected.

by_name=True: reads are expected to be sorted by query name. Consecutive read IDs are in alphabetical order,
and read pairs appear together.

by_name=False: reads are sorted by position. Consecutive reads have increasing position.

cnvlib.samutil.get_read_length(bam, span=1000)
Get (median) read length from first few reads in a BAM file.

Illumina reads all have the same length; other sequencers might not.

Parameters

• bam (str or pysam.Samfile) – Filename or pysam-opened BAM file.

• n (int) – Number of reads used to calculate median read length.

cnvlib.samutil.idxstats(bam_fname, drop_unmapped=False)
Get chromosome names, lengths, and number of mapped/unmapped reads.

Use the BAM index (.bai) to get the number of reads and size of each chromosome. Contigs with no mapped
reads are skipped.

cnvlib.samutil.is_newer_than(target_fname, orig_fname)
Compare file modification times.

segfilters

Filter copy number segments.

cnvlib.segfilters.ampdel(segarr)
Merge segments by amplified/deleted/neutral copy number status.

Follow the clinical reporting convention:

•5+ copies (2.5-fold gain) is amplification

•0 copies is homozygous/deep deletion

•CNAs of lesser degree are not reported

This is recommended only for selecting segments corresponding to actionable, usually focal, CNAs. Any real
and potentially informative but lower-level CNAs will be dropped.

cnvlib.segfilters.bic(segarr)
Merge segments by Bayesian Information Criterion.

See: BIC-seq (Xi 2011), doi:10.1073/pnas.1110574108

cnvlib.segfilters.ci(segarr)
Merge segments by confidence interval (overlapping 0).

Segments with lower CI above 0 are kept as gains, upper CI below 0 as losses, and the rest with CI overlapping
zero are collapsed as neutral.

4.1. cnvlib package 67

CNVkit Documentation, Release 0.9.0

cnvlib.segfilters.cn(segarr)
Merge segments by integer copy number.

cnvlib.segfilters.enumerate_changes(levels)
Assign a unique integer to each run of identical values.

Repeated but non-consecutive values will be assigned different integers.

cnvlib.segfilters.require_column(*colnames)
Wrapper to coordinate the segment-filtering functions.

Verify that the given columns are in the CopyNumArray the wrapped function takes. Also log the number of
rows in the array before and after filtration.

cnvlib.segfilters.sem(segarr)
Merge segments by Standard Error of the Mean (SEM).

Use each segment’s SEM value to estimate a 95% confidence interval (via zscore). Segments with lower CI
above 0 are kept as gains, upper CI below 0 as losses, and the rest with CI overlapping zero are collapsed as
neutral.

cnvlib.segfilters.squash_by_groups(cnarr, levels)
Reduce CopyNumArray rows to a single row within each given level.

cnvlib.segfilters.squash_region(cnarr)
Reduce a CopyNumArray to 1 row, keeping fields sensible.

Most fields added by the segmetrics command will be dropped.

smoothing

Signal smoothing functions.

cnvlib.smoothing.check_inputs(x, width)
Transform width into a half-window size.

width is either a fraction of the length of x or an integer size of the whole window. The output half-window size
is truncated to the length of x if needed.

cnvlib.smoothing.fit_edges(x, y, wing, polyorder=3)
Apply polynomial interpolation to the edges of y, in-place.

Calculates a polynomial fit (of order polyorder) of x within a window of width twice wing, then updates the
smoothed values y in the half of the window closest to the edge.

cnvlib.smoothing.outlier_iqr(a, c=3.0)
Detect outliers as a multiple of the IQR from the median.

By convention, “outliers” are points more than 1.5 * IQR from the median, and “extremes” or extreme outliers
are those more than 3.0 * IQR.

cnvlib.smoothing.outlier_mad_median(a)
MAD-Median rule for detecting outliers.

X_i is an outlier if:

| X_i - M |
_____________ > K ~= 2.24

MAD / 0.6745

68 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

where $K = sqrt(X^2_{0.975,1})$, the square root of the 0.975 quantile of a chi-squared distribution with 1
degree of freedom.

This is a very robust rule with the highest possible breakdown point of 0.5.

Returns A boolean array of the same size as a, where outlier indices are True.

Return type np.array

References

•Davies & Gather (1993) The Identification of Multiple Outliers.

•Rand R. Wilcox (2012) Introduction to robust estimation and hypothesis testing. Ch.3: Estimating mea-
sures of location and scale.

cnvlib.smoothing.rolling_median(x, width)
Rolling median with mirrored edges.

cnvlib.smoothing.rolling_outlier_iqr(x, width, c=3.0)
Detect outliers as a multiple of the IQR from the median.

By convention, “outliers” are points more than 1.5 * IQR from the median (~2 SD if values are normally
distributed), and “extremes” or extreme outliers are those more than 3.0 * IQR (~4 SD).

cnvlib.smoothing.rolling_outlier_quantile(x, width, q, m)
Detect outliers by multiples of a quantile in a window.

Outliers are the array elements outside m times the q‘th quantile of deviations from the smoothed trend line,
as calculated from the trend line residuals. (For example, take the magnitude of the 95th quantile times 5, and
mark any elements greater than that value as outliers.)

This is the smoothing method used in BIC-seq (doi:10.1073/pnas.1110574108) with the parameters width=200,
q=.95, m=5 for WGS.

Returns A boolean array of the same size as x, where outlier indices are True.

Return type np.array

cnvlib.smoothing.rolling_outlier_std(x, width, stdevs)
Detect outliers by stdev within a rolling window.

Outliers are the array elements outside stdevs standard deviations from the smoothed trend line, as calculated
from the trend line residuals.

Returns A boolean array of the same size as x, where outlier indices are True.

Return type np.array

cnvlib.smoothing.rolling_quantile(x, width, quantile)
Rolling quantile (0–1) with mirrored edges.

cnvlib.smoothing.rolling_std(x, width)
Rolling quantile (0–1) with mirrored edges.

cnvlib.smoothing.smoothed(x, width, do_fit_edges=False)
Smooth the values in x with the Kaiser windowed filter.

See: https://en.wikipedia.org/wiki/Kaiser_window

Parameters

• x (array-like) – 1-dimensional numeric data set.

4.1. cnvlib package 69

https://en.wikipedia.org/wiki/Kaiser_window

CNVkit Documentation, Release 0.9.0

• width (float) – Fraction of x’s total length to include in the rolling window (i.e. the
proportional window width), or the integer size of the window.

scikit-genome package

Module skgenome contents

Tabular file I/O (tabio)

tabio

I/O for tabular formats of genomic data (regions or features).

skgenome.tabio.read(infile, fmt=’tab’, into=None, sample_id=None, meta=None, **kwargs)
Read tabular data from a file or stream into a genome object.

Supported formats: see READERS

If a format supports multiple samples, return the sample specified by sample_id, or if unspecified, return the
first sample and warn if there were other samples present in the file.

Parameters

• infile (handle or string) – Filename or opened file-like object to read.

• fmt (string) – File format.

• into (class) – GenomicArray class or subclass to instantiate, overriding the default for
the target file format.

• sample_id (string) – Sample identifier.

• meta (dict) – Metadata, as arbitrary key-value pairs.

• **kwargs – Additional keyword arguments to the format-specific reader function.

Returns The data from the given file instantiated as into, if specified, or the default base class for
the given file format (usually GenomicArray).

Return type GenomicArray or subclass

skgenome.tabio.read_auto(infile)
Auto-detect a file’s format and use an appropriate parser to read it.

skgenome.tabio.safe_write(*args, **kwds)
Write to a filename or file-like object with error handling.

If given a file name, open it. If the path includes directories that don’t exist yet, create them. If given a file-like
object, just pass it through.

skgenome.tabio.sniff_region_format(fname)
Guess the format of the given file by reading the first line.

Returns The detected format name, or None if the file is empty.

Return type str or None

skgenome.tabio.write(garr, outfile=None, fmt=’tab’, verbose=True, **kwargs)
Write a genome object to a file or stream.

70 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

Base class: GenomicArray

The base class of the core objects used throughout CNVkit and scikit-genome is GenomicArray. It wraps a pandas
DataFrame instance, which is accessible through the .data attribute and can be used for any manipulations that aren’t
already provided by methods in the wrapper class.

gary

Base class for an array of annotated genomic regions.

class skgenome.gary.GenomicArray(data_table, meta_dict=None)
Bases: future.types.newobject.newobject

An array of genomic intervals. Base class for genomic data structures.

Can represent most BED-like tabular formats with arbitrary additional columns.

add(other)
Combine this array’s data with another GenomicArray (in-place).

Any optional columns must match between both arrays.

add_columns(**columns)
Add the given columns to a copy of this GenomicArray.

Parameters **columns (array) – Keyword arguments where the key is the new column’s
name and the value is an array of the same length as self which will be the new column’s
values.

Returns A new instance of self with the given columns included in the underlying dataframe.

Return type GenomicArray or subclass

as_columns(**columns)
Wrap the named columns in this instance’s metadata.

as_dataframe(dframe)
Wrap the given pandas dataframe in this instance’s metadata.

as_rows(rows)
Wrap the given rows in this instance’s metadata.

autosomes(also=())
Select chromosomes w/ integer names, ignoring any ‘chr’ prefixes.

by_chromosome()
Iterate over bins grouped by chromosome name.

by_ranges(other, mode=’inner’, keep_empty=True)
Group rows by another GenomicArray’s bin coordinate ranges.

For example, this can be used to group SNVs by CNV segments.

Bins in this array that fall outside the other array’s bins are skipped.

Parameters

• other (GenomicArray) – Another GA instance.

• mode (string) – Determines what to do with bins that overlap a boundary of the selec-
tion. Possible values are:

– inner: Drop the bins on the selection boundary, don’t emit them.

4.2. scikit-genome package 71

http://pandas.pydata.org/

CNVkit Documentation, Release 0.9.0

– outer: Keep/emit those bins as they are.

– trim: Emit those bins but alter their boundaries to match the selection; the bin start or
end position is replaced with the selection boundary position.

• keep_empty (bool) – Whether to also yield other bins with no overlapping bins in self,
or to skip them when iterating.

Yields tuple – (other bin, GenomicArray of overlapping rows in self)

chromosome

concat(others)
Concatenate several GenomicArrays, keeping this array’s metadata.

This array’s data table is not implicitly included in the result.

coords(also=())
Iterate over plain coordinates of each bin: chromosome, start, end.

Parameters

• also (str, or iterable of strings) – Also include these columns from self,
in addition to chromosome, start, and end.

• yielding rows in BED format (Example,) –

• probes.coords(also=["gene", "strand"]) (>>>) –

copy()
Create an independent copy of this object.

cut(other, combine=None)
Split this array’s regions at the boundaries in other.

drop_extra_columns()
Remove any optional columns from this GenomicArray.

Returns A new copy with only the minimal set of columns required by the class (e.g. chromo-
some, start, end for GenomicArray; may be more for subclasses).

Return type GenomicArray or subclass

end

filter(func=None, **kwargs)
Take a subset of rows where the given condition is true.

Parameters

• func (callable) – A boolean function which will be applied to each row to keep rows
where the result is True.

• **kwargs (string) – Keyword arguments like chromosome="chr7" or
gene="Antitarget", which will keep rows where the keyed field equals the speci-
fied value.

Returns Subset of self where the specified condition is True.

Return type GenomicArray

flatten(combine=None)
Split this array’s regions where they overlap.

classmethod from_columns(columns, meta_dict=None)
Create a new instance from column arrays, given as a dict.

72 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

classmethod from_rows(rows, columns=None, meta_dict=None)
Create a new instance from a list of rows, as tuples or arrays.

in_range(chrom=None, start=None, end=None, mode=’inner’)
Get the GenomicArray portion within the given genomic range.

Parameters

• chrom (str or None) – Chromosome name to select. Use None if self has only one
chromosome.

• start (int or None) – Start coordinate of range to select, in 0-based coordinates. If
None, start from 0.

• end (int or None) – End coordinate of range to select. If None, select to the end of
the chromosome.

• mode (str) – As in by_ranges: outer includes bins straddling the range boundaries,
trim additionally alters the straddling bins’ endpoints to match the range boundaries,
and inner excludes those bins.

Returns The subset of self enclosed by the specified range.

Return type GenomicArray

in_ranges(chrom=None, starts=None, ends=None, mode=’inner’)
Get the GenomicArray portion within the specified ranges.

Similar to in_ranges, but concatenating the selections of all the regions specified by the starts and ends
arrays.

Parameters

• chrom (str or None) – Chromosome name to select. Use None if self has only one
chromosome.

• starts (int array, or None) – Start coordinates of ranges to select, in 0-based
coordinates. If None, start from 0.

• ends (int array, or None) – End coordinates of ranges to select. If None, select
to the end of the chromosome. If starts and ends are both specified, they must be arrays of
equal length.

• mode (str) – As in by_ranges: outer includes bins straddling the range boundaries,
trim additionally alters the straddling bins’ endpoints to match the range boundaries,
and inner excludes those bins.

Returns Concatenation of all the subsets of self enclosed by the specified ranges.

Return type GenomicArray

into_ranges(other, column, default, summary_func=None)
Re-bin values from column into the corresponding ranges in other.

Match overlapping/intersecting rows from other to each row in self. Then, within each range in other,
extract the value(s) from column in self, using the function summary_func to produce a single value if
multiple bins in self map to a single range in other.

For example, group SNVs (self) by CNV segments (other) and calculate the median (summary_func) of
each SNV group’s allele frequencies.

Parameters

• other (GenomicArray) – Bins to

4.2. scikit-genome package 73

CNVkit Documentation, Release 0.9.0

• column (string) – Column name in self to extract values from.

• default – Value to assign to indices in other that do not overlap any bins in self. Type
should be the same as or compatible with the output field specified by column, or the
output of summary_func.

• summary_func (callable, dict of string-to-callable, or None) –
Specify how to reduce 1 or more other rows into a single value for the corresponding row
in self.

– If callable, apply to the column field each group of rows in other column.

– If a single-element dict of column name to callable, apply to that field in other instead
of column.

– If None, use an appropriate summarizing function for the datatype of the column column
in other (e.g. median of numbers, concatenation of strings).

– If some other value, assign that value to self wherever there is an overlap.

Returns The extracted and summarized values from self corresponding to other’s genomic
ranges, the same length as other.

Return type pd.Series

keep_columns(columns)
Extract a subset of columns, reusing this instance’s metadata.

labels()

merge(bp=0, stranded=False, combine=None)
Merge adjacent or overlapping regions into single rows.

Similar to ‘bedtools merge’.

resize_ranges(bp, chrom_sizes=None)
Resize each genomic bin by a fixed number of bases at each end.

Bin ‘start’ values have a minimum of 0, and chrom_sizes can specify each chromosome’s maximum ‘end’
value.

Similar to ‘bedtools slop’.

Parameters

• bp (int) – Number of bases in each direction to expand or shrink each bin. Applies to
‘start’ and ‘end’ values symmetrically, and may be positive (expand) or negative (shrink).

• chrom_sizes (dict of string-to-int) – Chromosome name to length in base
pairs. If given, all chromosomes in self must be included.

sample_id

shuffle()
Randomize the order of bins in this array (in-place).

sort()
Sort this array’s bins in-place, with smart chromosome ordering.

sort_columns()
Sort this array’s columns in-place, per class definition.

squash(combine=None)
Combine some groups of rows, by some criteria, into single rows.

start

74 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

subdivide(avg_size, min_size=0, verbose=False)
Split this array’s regions into roughly equal-sized sub-regions.

subtract(other)
Remove the overlapping regions in other from this array.

total_range_size()
Total number of bases covered by all (merged) regions.

Genomic interval arithmetic

intersect

DataFrame-level intersection operations.

Calculate overlapping regions, similar to bedtools intersect.

The functions here operate on pandas DataFrame and Series instances, not GenomicArray types.

skgenome.intersect.by_ranges(table, other, mode, keep_empty)
Group rows by another GenomicArray’s bin coordinate ranges.

skgenome.intersect.by_shared_chroms(table, other, keep_empty=True)

skgenome.intersect.into_ranges(source, dest, src_col, default, summary_func)
Group a column in source by regions in dest and summarize.

skgenome.intersect.iter_ranges(table, chrom, starts, ends, mode)
Iterate through sub-ranges.

skgenome.intersect.venn(table, other, mode)

merge

DataFrame-level merging operations.

Merge overlapping regions into single rows, similar to bedtools merge.

The functions here operate on pandas DataFrame and Series instances, not GenomicArray types.

skgenome.merge.flatten(table, combine=None)

skgenome.merge.merge(table, bp=0, stranded=False, combine=None)
Merge overlapping rows in a DataFrame.

subdivide

DataFrame-level subdivide operation.

Split each region into similar-sized sub-regions.

The functions here operate on pandas DataFrame and Series instances, not GenomicArray types.

skgenome.subdivide.subdivide(table, avg_size, min_size=0, verbose=False)

4.2. scikit-genome package 75

CNVkit Documentation, Release 0.9.0

subtract

DataFrame-level subtraction operations.

Subtract one set of regions from another, returning the one-way difference.

The functions here operate on pandas DataFrame and Series instances, not GenomicArray types.

skgenome.subtract.subtract(table, other)

Helper modules

chromsort

Operations on chromosome/contig/sequence names.

skgenome.chromsort.detect_big_chroms(sizes)
Determine the number of “big” chromosomes from their lengths.

In the human genome, this returns 24, where the canonical chromosomes 1-22, X, and Y are considered “big”,
while mitochrondria and the alternative contigs are not. This allows us to exclude the non-canonical chromo-
somes from an analysis where they’re not relevant.

Returns

• n_big (int) – Number of “big” chromosomes in the genome.

• thresh (int) – Length of the smallest “big” chromosomes.

skgenome.chromsort.sorter_chrom(label)
Create a sorting key from chromosome label.

Sort by integers first, then letters or strings. The prefix “chr” (case-insensitive), if present, is stripped automati-
cally for sorting.

E.g. chr1 < chr2 < chr10 < chrX < chrY < chrM

combiners

Combiner functions for Python list-like input.

skgenome.combiners.first_of(elems)
Return the first element of the input.

skgenome.combiners.get_combiners(table, stranded=False, combine=None)
Get a combine lookup suitable for table.

Parameters

• table (DataFrame) –

• stranded (bool) –

• combine (dict or None) – Column names to their value-combining functions, replac-
ing or in addition to the defaults.

Returns Column names to their value-combining functions.

Return type dict

skgenome.combiners.join_strings(elems, sep=’, ‘)
Join a Series of strings by commas.

76 Chapter 4. Python API

CNVkit Documentation, Release 0.9.0

skgenome.combiners.last_of(elems)
Return the last element of the input.

skgenome.combiners.make_const(val)

skgenome.combiners.max_of(elems)

skgenome.combiners.merge_strands(elems)

rangelabel

Handle text genomic ranges as named tuples.

A range specification should look like chromosome:start-end, e.g. chr1:1234-5678, with 1-indexed in-
teger coordinates. We also allow chr1:1234- or chr1:-5678, where missing start becomes 0 and missing end
becomes None.

class skgenome.rangelabel.NamedRegion(chromosome, start, end, gene)
Bases: tuple

chromosome
Alias for field number 0

end
Alias for field number 2

gene
Alias for field number 3

start
Alias for field number 1

class skgenome.rangelabel.Region(chromosome, start, end)
Bases: tuple

chromosome
Alias for field number 0

end
Alias for field number 2

start
Alias for field number 1

skgenome.rangelabel.from_label(text, keep_gene=True)
Parse a chromosomal range specification.

Parameters text (string) – Range specification, which should look like chr1:1234-5678
or chr1:1234- or chr1:-5678, where missing start becomes 0 and missing end becomes
None.

skgenome.rangelabel.to_label(row)
Convert a Region or (chrom, start, end) tuple to a region label.

skgenome.rangelabel.unpack_range(a_range)
Extract chromosome, start, end from a string or tuple.

Examples:

"chr1" -> ("chr1", None, None)
"chr1:100-123" -> ("chr1", 99, 123)
("chr1", 100, 123) -> ("chr1", 100, 123)

4.2. scikit-genome package 77

CNVkit Documentation, Release 0.9.0

78 Chapter 4. Python API

CHAPTER 5

Citation

If you use this software in a publication, please cite our paper describing CNVkit:

Talevich, E., Shain, A.H., Botton, T., & Bastian, B.C. (2014). CNVkit: Genome-wide copy number
detection and visualization from targeted sequencing. PLOS Computational Biology 12(4):e1004873

Also please cite the supporting paper for the segmentation method you use:

PSCBS (cbs, the default):

• Olshen, A.B., Bengtsson, H., Neuvial, P., Spellman, P.T., Olshen, R.A., & Seshan, V.E. (2011). Parent-
specific copy number in paired tumor-normal studies using circular binary segmentation. Bioinformatics
27(15):2038–46.

• Venkatraman, E.S., & Olshen, A.B. (2007). A faster circular binary segmentation algorithm for the analysis
of array CGH data. Bioinformatics 23(6):657–63

HaarSeg (haar): Ben-Yaacov, E., & Eldar, Y.C. (2008). A fast and flexible method for the segmentation of aCGH
data. Bioinformatics 24(16):i139-45.

CGH Fused Lasso (flasso): Tibshirani, R., & Wang, P. (2008). Spatial smoothing and hot spot detection for CGH
data using the fused lasso. Biostatistics 9(1):18–29

Who else is using CNVkit?

Google Scholar lists some of the studies where CNVkit has been used by other researchers. We’d like to highlight:

• McCreery, M.Q. et al. (2015). Evolution of metastasis revealed by mutational landscapes of chemically induced
skin cancers. Nature Medicine 21, 1514–1520

• Shain, A.H. et al. (2015). Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter
mutations and diverse activating mutations in the MAPK pathway. Nature Genetics, 47(10), 1194-1199

• Shain, A.H. et al. (2015). The Genetic Evolution of Melanoma from Precursor Lesions. New England Journal
of Medicine, 373(20), 1926-1936

79

http://dx.doi.org/10.1371/journal.pcbi.1004873
http://dx.doi.org/10.1371/journal.pcbi.1004873
http://doi.org/10.1093/bioinformatics/btr329
http://doi.org/10.1093/bioinformatics/btr329
http://doi.org/10.1093/bioinformatics/btl646
http://doi.org/10.1093/bioinformatics/btl646
http://doi.org/10.1093/bioinformatics/btn272
http://doi.org/10.1093/bioinformatics/btn272
http://doi.org/10.1093/biostatistics/kxm013
http://doi.org/10.1093/biostatistics/kxm013
https://scholar.google.com/scholar?cites=4696125388809243311&as_sdt=2005&sciodt=0,5&hl=en
http://dx.doi.org/10.1038/nm.3979
http://dx.doi.org/10.1038/nm.3979
http://dx.doi.org/10.1038/ng.3382
http://dx.doi.org/10.1038/ng.3382
http://dx.doi.org/10.1056/NEJMoa1502583

CNVkit Documentation, Release 0.9.0

Specific support for CNVkit is included in bcbio-nextgen, THetA2, and MetaSV. CNVkit is also available on the
commercial platforms DNAnexus, Bina RAVE, and Diploid InHelix.

Finally, CNVkit can export files to several standard formats that can be used with many other software packages,
including BioDiscovery Nexus Copy Number and Integrative Genomics Viewer (IGV).

80 Chapter 5. Citation

https://bcbio-nextgen.readthedocs.io/
http://compbio.cs.brown.edu/projects/theta/
http://bioinform.github.io/metasv/
http://www.dnanexus.com/
http://www.bina.com/rave
http://www.diploid.com/inhelix
http://www.biodiscovery.com/nexus-copy-number/
http://software.broadinstitute.org/software/igv/

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

81

CNVkit Documentation, Release 0.9.0

82 Chapter 6. Indices and tables

Python Module Index

c
cnvlib, 45
cnvlib.access, 50
cnvlib.antitarget, 51
cnvlib.autobin, 51
cnvlib.batch, 52
cnvlib.call, 52
cnvlib.cmdutil, 63
cnvlib.cnary, 45
cnvlib.commands, 49
cnvlib.core, 63
cnvlib.coverage, 54
cnvlib.descriptives, 64
cnvlib.diagram, 54
cnvlib.export, 55
cnvlib.fix, 57
cnvlib.heatmap, 58
cnvlib.importers, 58
cnvlib.metrics, 58
cnvlib.parallel, 65
cnvlib.params, 66
cnvlib.plots, 66
cnvlib.reference, 59
cnvlib.reports, 60
cnvlib.samutil, 66
cnvlib.scatter, 61
cnvlib.segfilters, 67
cnvlib.segmentation, 62
cnvlib.smoothing, 68
cnvlib.target, 62
cnvlib.vary, 48

s
skgenome, 70
skgenome.chromsort, 76
skgenome.combiners, 76
skgenome.gary, 71
skgenome.intersect, 75
skgenome.merge, 75

skgenome.rangelabel, 77
skgenome.subdivide, 75
skgenome.subtract, 76
skgenome.tabio, 70

83

CNVkit Documentation, Release 0.9.0

84 Python Module Index

Index

A
absolute_clonal() (in module cnvlib.call), 52
absolute_dataframe() (in module cnvlib.call), 53
absolute_expect() (in module cnvlib.call), 53
absolute_pure() (in module cnvlib.call), 53
absolute_reference() (in module cnvlib.call), 53
absolute_threshold() (in module cnvlib.call), 53
add() (skgenome.gary.GenomicArray method), 71
add_columns() (skgenome.gary.GenomicArray method),

71
ampdel() (in module cnvlib.segfilters), 67
apply_weights() (in module cnvlib.fix), 57
as_columns() (skgenome.gary.GenomicArray method),

71
as_dataframe() (skgenome.gary.GenomicArray method),

71
as_rows() (skgenome.gary.GenomicArray method), 71
assert_equal() (in module cnvlib.core), 63
assign_ci_start_end() (in module cnvlib.export), 55
autosomes() (skgenome.gary.GenomicArray method), 71
average_depth() (in module cnvlib.autobin), 51

B
baf_by_ranges() (cnvlib.vary.VariantArray method), 48
bam_total_reads() (in module cnvlib.samutil), 66
batch_make_reference() (in module cnvlib.batch), 52
batch_run_sample() (in module cnvlib.batch), 52
batch_write_coverage() (in module cnvlib.batch), 52
bc_chromosome_draw_label() (in module cn-

vlib.diagram), 54
bc_organism_draw() (in module cnvlib.diagram), 54
bed2probes() (in module cnvlib.reference), 59
bedcov() (in module cnvlib.coverage), 54
bic() (in module cnvlib.segfilters), 67
biweight_location() (in module cnvlib.descriptives), 64
biweight_midvariance() (in module cnvlib.descriptives),

64
build_chrom_diagram() (in module cnvlib.diagram), 55

by_chromosome() (skgenome.gary.GenomicArray
method), 71

by_gene() (cnvlib.cnary.CopyNumArray method), 45
by_ranges() (in module skgenome.intersect), 75
by_ranges() (skgenome.gary.GenomicArray method), 71
by_shared_chroms() (in module skgenome.intersect), 75

C
calculate_gc_lo() (in module cnvlib.reference), 59
call_quiet() (in module cnvlib.core), 63
center_all() (cnvlib.cnary.CopyNumArray method), 46
center_by_window() (in module cnvlib.fix), 57
check_inputs() (in module cnvlib.smoothing), 68
check_unique() (in module cnvlib.core), 64
chromosome (skgenome.gary.GenomicArray attribute),

72
chromosome (skgenome.rangelabel.NamedRegion

attribute), 77
chromosome (skgenome.rangelabel.Region attribute), 77
chromosome_scatter() (in module cnvlib.scatter), 61
chromosome_sizes() (in module cnvlib.plots), 66
ci() (in module cnvlib.segfilters), 67
cn() (in module cnvlib.segfilters), 67
cnv_on_chromosome() (in module cnvlib.scatter), 61
cnv_on_genome() (in module cnvlib.scatter), 61
cnvlib (module), 45
cnvlib.access (module), 50
cnvlib.antitarget (module), 51
cnvlib.autobin (module), 51
cnvlib.batch (module), 52
cnvlib.call (module), 52
cnvlib.cmdutil (module), 63
cnvlib.cnary (module), 45
cnvlib.commands (module), 49
cnvlib.core (module), 63
cnvlib.coverage (module), 54
cnvlib.descriptives (module), 64
cnvlib.diagram (module), 54
cnvlib.export (module), 55
cnvlib.fix (module), 57

85

CNVkit Documentation, Release 0.9.0

cnvlib.heatmap (module), 58
cnvlib.importers (module), 58
cnvlib.metrics (module), 58
cnvlib.parallel (module), 65
cnvlib.params (module), 66
cnvlib.plots (module), 66
cnvlib.reference (module), 59
cnvlib.reports (module), 60
cnvlib.samutil (module), 66
cnvlib.scatter (module), 61
cnvlib.segfilters (module), 67
cnvlib.segmentation (module), 62
cnvlib.smoothing (module), 68
cnvlib.target (module), 62
cnvlib.vary (module), 48
combine_probes() (in module cnvlib.reference), 59
compare_chrom_names() (in module cnvlib.antitarget),

51
compare_sex_chromosomes() (cn-

vlib.cnary.CopyNumArray method), 46
concat() (skgenome.gary.GenomicArray method), 72
confidence_interval_bootstrap() (in module cn-

vlib.metrics), 58
coords() (skgenome.gary.GenomicArray method), 72
copy() (skgenome.gary.GenomicArray method), 72
CopyNumArray (class in cnvlib.cnary), 45
create_diagram() (in module cnvlib.diagram), 55
cut() (skgenome.gary.GenomicArray method), 72
cvg2rgb() (in module cnvlib.plots), 66

D
detect_bedcov_columns() (in module cnvlib.coverage),

54
detect_big_chroms() (in module skgenome.chromsort),

76
do_access() (in module cnvlib.access), 50
do_access() (in module cnvlib.commands), 49
do_antitarget() (in module cnvlib.antitarget), 51
do_antitarget() (in module cnvlib.commands), 49
do_autobin() (in module cnvlib.autobin), 51
do_autobin() (in module cnvlib.commands), 49
do_breaks() (in module cnvlib.commands), 50
do_call() (in module cnvlib.call), 53
do_call() (in module cnvlib.commands), 50
do_coverage() (in module cnvlib.commands), 49
do_coverage() (in module cnvlib.coverage), 54
do_fix() (in module cnvlib.commands), 50
do_fix() (in module cnvlib.fix), 57
do_gainloss() (in module cnvlib.commands), 50
do_heatmap() (in module cnvlib.commands), 50
do_heatmap() (in module cnvlib.heatmap), 58
do_import_picard() (in module cnvlib.importers), 58
do_import_theta() (in module cnvlib.commands), 50
do_import_theta() (in module cnvlib.importers), 58

do_metrics() (in module cnvlib.commands), 50
do_metrics() (in module cnvlib.metrics), 59
do_reference() (in module cnvlib.commands), 49
do_reference() (in module cnvlib.reference), 59
do_reference_flat() (in module cnvlib.commands), 50
do_reference_flat() (in module cnvlib.reference), 59
do_scatter() (in module cnvlib.commands), 50
do_scatter() (in module cnvlib.scatter), 61
do_segmentation() (in module cnvlib.commands), 50
do_segmentation() (in module cnvlib.segmentation), 62
do_sex() (in module cnvlib.commands), 50
do_target() (in module cnvlib.commands), 49
do_target() (in module cnvlib.target), 62
drop_extra_columns() (skgenome.gary.GenomicArray

method), 72
drop_low_coverage() (cnvlib.cnary.CopyNumArray

method), 46
drop_outliers() (in module cnvlib.segmentation), 62

E
edge_gains() (in module cnvlib.fix), 57
edge_losses() (in module cnvlib.fix), 57
end (skgenome.gary.GenomicArray attribute), 72
end (skgenome.rangelabel.NamedRegion attribute), 77
end (skgenome.rangelabel.Region attribute), 77
ensure_bam_index() (in module cnvlib.samutil), 66
ensure_bam_sorted() (in module cnvlib.samutil), 67
ensure_path() (in module cnvlib.core), 64
enumerate_changes() (in module cnvlib.segfilters), 68
ests_of_scale() (in module cnvlib.metrics), 59
expect_flat_log2() (cnvlib.cnary.CopyNumArray

method), 46
export_bed() (in module cnvlib.export), 55
export_nexus_basic() (in module cnvlib.export), 55
export_nexus_ogt() (in module cnvlib.export), 55
export_seg() (in module cnvlib.export), 55
export_theta() (in module cnvlib.export), 55
export_theta_snps() (in module cnvlib.export), 56
export_vcf() (in module cnvlib.export), 56

F
fasta_extract_regions() (in module cnvlib.reference), 60
fbase() (in module cnvlib.core), 64
filter() (skgenome.gary.GenomicArray method), 72
filter_names() (in module cnvlib.target), 62
first_of() (in module skgenome.combiners), 76
fit_edges() (in module cnvlib.smoothing), 68
flatten() (in module skgenome.merge), 75
flatten() (skgenome.gary.GenomicArray method), 72
fmt_cdt() (in module cnvlib.export), 56
fmt_gct() (in module cnvlib.export), 56
fmt_jtv() (in module cnvlib.export), 56
from_columns() (skgenome.gary.GenomicArray class

method), 72

86 Index

CNVkit Documentation, Release 0.9.0

from_label() (in module skgenome.rangelabel), 77
from_rows() (skgenome.gary.GenomicArray class

method), 72

G
gainloss_by_gene() (in module cnvlib.reports), 60
gainloss_by_segment() (in module cnvlib.reports), 60
gapper_scale() (in module cnvlib.descriptives), 64
gene (skgenome.rangelabel.NamedRegion attribute), 77
gene_coords_by_name() (in module cnvlib.plots), 66
gene_coords_by_range() (in module cnvlib.plots), 66
genome_scatter() (in module cnvlib.scatter), 61
GenomicArray (class in skgenome.gary), 71
get_antitargets() (in module cnvlib.antitarget), 51
get_breakpoints() (in module cnvlib.reports), 60
get_combiners() (in module skgenome.combiners), 76
get_edge_bias() (in module cnvlib.fix), 57
get_fasta_stats() (in module cnvlib.reference), 60
get_gene_intervals() (in module cnvlib.reports), 60
get_read_length() (in module cnvlib.samutil), 67
get_regions() (in module cnvlib.access), 51
group_by_genes() (in module cnvlib.reports), 60
group_snvs_by_segments() (in module cnvlib.scatter), 61
guess_chromosome_regions() (in module cn-

vlib.antitarget), 51
guess_xx() (cnvlib.cnary.CopyNumArray method), 47

H
heterozygous() (cnvlib.vary.VariantArray method), 48
hybrid() (in module cnvlib.autobin), 52

I
idxstats() (in module cnvlib.samutil), 67
idxstats2ga() (in module cnvlib.autobin), 52
in_range() (skgenome.gary.GenomicArray method), 73
in_ranges() (skgenome.gary.GenomicArray method), 73
infer_sexes() (in module cnvlib.reference), 60
interquartile_range() (in module cnvlib.descriptives), 64
interval_coverages() (in module cnvlib.coverage), 54
interval_coverages_count() (in module cnvlib.coverage),

54
interval_coverages_pileup() (in module cnvlib.coverage),

54
into_ranges() (in module skgenome.intersect), 75
into_ranges() (skgenome.gary.GenomicArray method),

73
is_newer_than() (in module cnvlib.samutil), 67
iter_ranges() (in module skgenome.intersect), 75

J
join_regions() (in module cnvlib.access), 51
join_strings() (in module skgenome.combiners), 76

K
keep_columns() (skgenome.gary.GenomicArray

method), 74

L
labels() (skgenome.gary.GenomicArray method), 74
last_of() (in module skgenome.combiners), 76
load_adjust_coverages() (in module cnvlib.fix), 58
load_het_snps() (in module cnvlib.cmdutil), 63
log2 (cnvlib.cnary.CopyNumArray attribute), 47
log2_ratios() (in module cnvlib.call), 53
log_this() (in module cnvlib.access), 51

M
make_const() (in module skgenome.combiners), 77
map() (cnvlib.parallel.SerialPool method), 65
mask_bad_bins() (in module cnvlib.fix), 58
match_ref_to_sample() (in module cnvlib.fix), 58
max_of() (in module skgenome.combiners), 77
mean_squared_error() (in module cnvlib.descriptives), 64
median_absolute_deviation() (in module cn-

vlib.descriptives), 64
merge() (in module skgenome.merge), 75
merge() (skgenome.gary.GenomicArray method), 74
merge_samples() (in module cnvlib.export), 56
merge_strands() (in module skgenome.combiners), 77
midsize_file() (in module cnvlib.autobin), 52
mirrored_baf() (cnvlib.vary.VariantArray method), 48
modal_location() (in module cnvlib.descriptives), 65

N
NamedRegion (class in skgenome.rangelabel), 77

O
on_array() (in module cnvlib.descriptives), 65
on_weighted_array() (in module cnvlib.descriptives), 65
outlier_iqr() (in module cnvlib.smoothing), 68
outlier_mad_median() (in module cnvlib.smoothing), 68

P
parse_theta_results() (in module cnvlib.importers), 58
partition_by_chrom() (in module cnvlib.plots), 66
pick_pool() (in module cnvlib.parallel), 65
plot_x_dividers() (in module cnvlib.plots), 66
prediction_interval() (in module cnvlib.metrics), 59

Q
q_n() (in module cnvlib.descriptives), 65

R
read() (in module skgenome.tabio), 70
read_auto() (in module skgenome.tabio), 70
read_cna() (in module cnvlib.cmdutil), 63

Index 87

CNVkit Documentation, Release 0.9.0

ref_means_nbins() (in module cnvlib.export), 56
reference2regions() (in module cnvlib.reference), 60
Region (class in skgenome.rangelabel), 77
region_depth_count() (in module cnvlib.coverage), 54
region_size_by_chrom() (in module cnvlib.autobin), 52
repair_segments() (in module cnvlib.segmentation), 62
require_column() (in module cnvlib.segfilters), 68
rescale_baf() (in module cnvlib.call), 53
residuals() (cnvlib.cnary.CopyNumArray method), 47
resize_ranges() (skgenome.gary.GenomicArray method),

74
result() (cnvlib.parallel.SerialFuture method), 65
rm() (in module cnvlib.parallel), 65
rolling_median() (in module cnvlib.smoothing), 69
rolling_outlier_iqr() (in module cnvlib.smoothing), 69
rolling_outlier_quantile() (in module cnvlib.smoothing),

69
rolling_outlier_std() (in module cnvlib.smoothing), 69
rolling_quantile() (in module cnvlib.smoothing), 69
rolling_std() (in module cnvlib.smoothing), 69

S
safe_write() (in module skgenome.tabio), 70
sample_id (skgenome.gary.GenomicArray attribute), 74
sample_midsize_regions() (in module cnvlib.autobin), 52
sample_region_cov() (in module cnvlib.autobin), 52
segment_mean() (in module cnvlib.metrics), 59
segments2vcf() (in module cnvlib.export), 56
sem() (in module cnvlib.segfilters), 68
SerialFuture (class in cnvlib.parallel), 65
SerialPool (class in cnvlib.parallel), 65
set_colorbar() (in module cnvlib.heatmap), 58
set_xlim_from() (in module cnvlib.scatter), 61
setup_chromosome() (in module cnvlib.scatter), 61
shared_chroms() (in module cnvlib.autobin), 52
shift_xx() (cnvlib.cnary.CopyNumArray method), 47
shorten_labels() (in module cnvlib.target), 62
shortest_name() (in module cnvlib.target), 63
shuffle() (skgenome.gary.GenomicArray method), 74
shutdown() (cnvlib.parallel.SerialPool method), 65
skgenome (module), 70
skgenome.chromsort (module), 76
skgenome.combiners (module), 76
skgenome.gary (module), 71
skgenome.intersect (module), 75
skgenome.merge (module), 75
skgenome.rangelabel (module), 77
skgenome.subdivide (module), 75
skgenome.subtract (module), 76
skgenome.tabio (module), 70
smoothed() (in module cnvlib.smoothing), 69
sniff_region_format() (in module skgenome.tabio), 70
snv_on_chromosome() (in module cnvlib.scatter), 61
snv_on_genome() (in module cnvlib.scatter), 62

sort() (skgenome.gary.GenomicArray method), 74
sort_columns() (skgenome.gary.GenomicArray method),

74
sorter_chrom() (in module skgenome.chromsort), 76
squash() (skgenome.gary.GenomicArray method), 74
squash_by_groups() (in module cnvlib.segfilters), 68
squash_genes() (cnvlib.cnary.CopyNumArray method),

47
squash_region() (in module cnvlib.segfilters), 68
squash_segments() (in module cnvlib.segmentation), 62
start (skgenome.gary.GenomicArray attribute), 74
start (skgenome.rangelabel.NamedRegion attribute), 77
start (skgenome.rangelabel.Region attribute), 77
subdivide() (in module skgenome.subdivide), 75
subdivide() (skgenome.gary.GenomicArray method), 74
submit() (cnvlib.parallel.SerialPool method), 65
subtract() (in module skgenome.subtract), 76
subtract() (skgenome.gary.GenomicArray method), 75

T
temp_write_text() (in module cnvlib.core), 64
test_loh() (in module cnvlib.plots), 66
theta_read_counts() (in module cnvlib.export), 56
to_chunks() (in module cnvlib.parallel), 65
to_label() (in module skgenome.rangelabel), 77
total_range_size() (skgenome.gary.GenomicArray

method), 75
total_region_size() (in module cnvlib.autobin), 52
transfer_fields() (in module cnvlib.segmentation), 62
tumor_boost() (cnvlib.vary.VariantArray method), 48

U
unpack_range() (in module skgenome.rangelabel), 77
unpipe_name() (in module cnvlib.importers), 58
update_chrom_length() (in module cnvlib.autobin), 52

V
VariantArray (class in cnvlib.vary), 48
venn() (in module skgenome.intersect), 75
verify_sample_sex() (in module cnvlib.cmdutil), 63

W
warn_bad_bins() (in module cnvlib.reference), 60
weighted_median() (in module cnvlib.descriptives), 65
write() (in module skgenome.tabio), 70
write_dataframe() (in module cnvlib.cmdutil), 63
write_text() (in module cnvlib.cmdutil), 63
write_tsv() (in module cnvlib.cmdutil), 63

Z
zip_repeater() (in module cnvlib.metrics), 59
zygosity_from_freq() (cnvlib.vary.VariantArray method),

49

88 Index

	Quick start
	Install CNVkit
	Download the reference genome
	Map sequencing reads to the reference genome
	Build a reference from normal samples and infer tumor copy ratios
	Next steps

	Command line usage
	Copy number calling pipeline
	Plots and graphics
	Text and tabular reports
	Compatibility and other I/O
	Additional scripts

	FAQ & How To
	Calling copy number gains and losses
	Allele frequencies and copy number
	Tumor analysis
	Tumor heterogeneity
	Germline analysis
	Whole-genome sequencing and targeted amplicon capture
	Chromosomal sex
	Bias corrections
	File formats

	Python API
	cnvlib package
	scikit-genome package

	Citation
	Who else is using CNVkit?

	Indices and tables
	Python Module Index

